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1 Introduction 

In this article, I will discuss the detailed implementation of the finite volume method 

(FVM) with coordinate transformation between two curvilinear coordinate systems. 

The reason that why I care about coordinate transformation between curvilinear 

coordinate systems is that, in my Ph.D. thesis I have to transform an axial asymmetric 

geometry from a cylindrical coordinate system to a new curvilinear coordinate system 

so that the transformed geometry is axial symmetric. 

To be honest, it really took me great effort to accomplish this techniques. It turns 

out that, back to the days when I spent all my time trying and struggling to figure out 

what is the right expressions of the Gaussian integral in different coordinate systems, I 

really lacked the experiences and mathematical skills that related to curvilinear 

coordinate systems. In fact, the content of my graduate education did not cover this 

topic at all. Therefore, I had to walk through the mine field by myself, otherwise I won’t 

have the chance to finish my Ph.D. thesis. Actually, I was not alone through all that 

period of time. I have to thank my colleague, Bing DONG <dongbing@sjtu.edu.cn>, 

who spent his valuable time with me, again and again, to derive the mathematical 

expressions on the white board in our lab. We together tried really hard to understand 

what a curvilinear coordinate system really is. We exchanged thoughts and conducted 

mathematical experiments, revealing the mysterious characteristics of curvilinear 

coordinate system, bit by bit. And we both found that it was worth the time and effort. 

I was really happy that you were with me back to those days, buddy. 

2 Vector and Coordinate Transformation 

A coordinate transformation affects the way how vectors are represented as coordinates, 

and the way we perform vector calculation. Since vector calculation is essential for 

theory of fluid dynamics and computational fluid dynamics (CFD), it would be better 

that we discuss this topic right at the beginning. 

In this section, the relation between coordinate transformation and vector 

calculations is discussed. First a demonstration problem is introduced in which the 

coordinate transformation between curvilinear coordinate systems is needed. In fact, it 

is the actual work of my Ph.D. thesis. 
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2.1 Coordinate transformation and partial derivatives 

As illustrated in Fig. 1, the original geometry is a 2D annular consists of two circles 

which are depicted by solid lines. I need a coordinate transformation to turn this axial 

asymmetric geometry region into an axial symmetric one, similar to that represent by 

the dashed line and outer circle. In the original work, the outer circle and inner circle 

are defined as the stator and rotor, respectively. 

 

 
Fig. 1 Coordinate transformation 

 

The original problem is described in cylindrical coordinate system, (x, r, θ), with 

the origin, O, at the center of the stator and the x-axis be along the axis of the stator. (x, 

r, θ) is transformed to a new coordinate system (ξ, η, ζ) by the expressions of Eq. (1.1) 

to (1.3). 

 

 x    (1.1) 
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r r
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H



    (1.2) 

     (1.3) 

 

where Eq. (1.2) is the same with that used by Dietzen and Nordmann[1, 2]. The 

coordinate transformation of Eq. (1.1) to (1.3) is only valid when the ratio of r0/C0 is 

relatively small, say about 0.1. Fig. 2 shows an example of this coordinate 

transformation. In Fig. 2, the red lines are the original stator and rotor profile. The green 

lines represent a sample mesh in the original coordinate system. The blue dashed line 

is the transformed rotor profile. After the coordinate transformation, the green lines will 
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be placed in an axial symmetric manner. 

 

 
Fig. 2 Illustration of coordinate transformation. 

 

In Eq. (1.2), H is written as 

 

 0 e 1H C h    (1.4) 

 

where C0 and εe are geometry constants. h1 is a function of ζ. Based on Eq. (1.4) and 

(1.2) we can obtain Eq. (1.5). 

 

  S 1
e

0

h
r r

C
       (1.5) 

 

As for the partial derivatives in the N-S equations, Eq. (1.6) and (1.7) holds. 
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      

          
  (1.7) 

 

where [J] is the Jacobian matrix. 
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From the chain rule, [J-1] could be expressed as Eq. (1.9). 
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J   (1.9) 

 

Values of some of the terms in Eq. (1.6) and (1.7) are relatively easy to be determined, 

and are expressed by Eq. (1.10) and (1.11). 
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J   (1.10) 

 0
t t

  
 

 
  (1.11) 

 

From now on, the short-handed version of /r    and /r    are used. The 

similar notations could be found in [3]. 
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Then the determinant of [J] is 
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Furthermore 
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At this point, if the terms marked by * in Eq. (1.15) are used, then the partial 

derivatives of an arbitrary scalar ϕ variable could be expressed as 
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
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   
  (1.18) 

 
t t t
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
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 

   
  (1.19) 

 

And we must not forget the important infinitesimal term of Eq. (1.20). 

 

  d d d , d d dr r x r J        (1.20) 

 

2.2 The unit base vectors in cylindrical coordinate system 

A vector is a vector, it dose not depend on the way it is described. However, in general 

3D space, people agree on that three particular vectors in the Cartesian coordinate 

system are chosen to be base vectors, Eq. (1.21). Once the base vectors are defined any 

vector of the same space could be expressed by a linear combination of those base 

vectors. It is a fundamental result of the theory of linear algebra. It is notable that 

Eq. (1.21) is a set of unit vectors that orthogonal with each other. 
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     

e e e e e e   (1.21) 

 

For 3D cylindrical coordinate system (x, r, θ), the unit base vector could be defined 

as Eq. (1.22). 
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  (1.22) 

 

where the three numbers in each curly brace are the coordinates with respect to the 

Cartesian coordinate system, (x,y,z). It is worth to be noted that Eq. (1.22) shows that 

the unit vectors are functions of θ.  

Similar to the case in the Cartesian coordinate, a general vector v could be 

expressed by the linear combination of the base vectors, as shown by Eq. (1.23). 

 

 x x r r θ θv v v  v e e e   (1.23) 

 

Then the addition and inner product (or dot product) operations between vectors in 3D 

cylindrical coordinate could be defined in a straight forward way. 

Considering Eq. (1.23), two special aspects should be noted. 

（1） Before any operation of addition or inner product is taken between vectors, it 

should be verified that the vectors are referring to their particular set of base vectors. 

This constraint on the operations of addition and inner product is the direct consequence 

of the fact that the base vectors used in Eq. (1.23) are functions of special position. A 

situation with particular interest is that, two vectors, which participate an operation of 

addition of inner product, share the same set of base vectors. Then the expressions of 

Eq. (1.24) and (1.25) hold. 
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1 2 x1 x r1 r θ1 θ x2 x r2 r θ2 θ

x1 x2 x r1 r2 r θ1 θ2 θ
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      

     

v v e e e e e e

e e e
  (1.24) 
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   1 2 x1 x r1 r θ1 θ x2 x r2 r θ2 θ
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      

  
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with the fact that 

 

 
1

 with , x, r, θ
0

i j

i j
i j

i j


  


e e   (1.26) 

 

Thus the three vectors which belong to the same set of base vectors in a cylindrical 

coordinate system preserve the orthonormal property. 

For convenience, unless stated otherwise, in the following sections the operations 

of addition and inner product between vectors are the same with Eq. (1.24) and (1.25). 

Most of the time, the base vectors encountered in this article are defined by referring to 

the center of the control volume (CV) or the center of a face of the CV. 

（2）Unlike the Cartesian coordinate system, the base vectors of Eq. (1.23) do not have 

the same “units” of “dimensions” if you want to force such a concept to be associated 

with the base vectors. It is easy to find that ex and er have a sense of “linear length”, 

however, eθ represents a direction of angle increase anticlockwise. eθ does not have the 

sense of “linear length”. To make it has the sense of linear length, eθ should be 

associated with a parameter representing the idea of “radius”. In calculus we use reθ. In 

fact, reθ represents the unit or direction of an increasing curve, not a straight line. I think 

the above concepts are of great importance for mathematical derivations in cylindrical 

coordinate system. It becomes easier when we are trying to interpret and understand 

calculus concepts, such as differentiation and integration, in cylindrical coordinate 

system if the combination of reθ is used to think of “length”. 

 

2.3 Transformation of vector 

Before we discuss the numerical implementation of FVM, we still need to figure out 

how a general vector behaves during a coordinate transformation. The content 

discussed in this section is similar with those one could find in a book of theory of FVM 

with topics associated with curvilinear coordinates or body-fitted coordinates. I have to 

admit that those topics are seemed to be obsolete in modern times, since we are so 

familiar and used to FVM techniques with unstructured grids. However, for me and the 

specific purpose code that I would like to develop for my Ph.D. thesis, the theories of 

coordinate transformation and the behavior of a general vector are important. 

As mentioned before, a vector is a vector, it does not change according to the 

coordinate system, what changes is the expression of the vector. In order to represent a 

vector v in the transformed coordinate system, (ξ, η, ζ), and at the same time, preserving 

the invariance of v, theories of contravariant and covariant bases are needed. These 

topics are usually covered in tensor analysis or differential geometry. 
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Take a point in the original cylindrical coordinate system with the coordinates 

(x,r,θ), we can write its position vector as Eq. (1.27). 

 

 x rx r R e e   (1.27) 

 

It is notable that the circumferential component of R is always zero. According to the 

work of Hung[4], for the transformation between coordinate system (x, r, θ) and (ξ, η, 

ζ), the covariant base vectors could be defined as 

 

    1 x r xx r
  

  
   
  

R
g e e e   (1.28) 

    2 x r , rx r r
  

  
   
  

R
g e e e   (1.29) 

    3 x r , r θx r r r
  

  
    
  

R
g e e e e   (1.30) 

 

And the contravariant base vectors are 

 

 
1

x r θ , x

1 1
r

x r r J

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



  
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  
g e e e e   (1.31) 
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1 1 1
r
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
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



  
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3

x r θ , θ

1 1
r

x r r Jr


  




  
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  
g e e e e   (1.33) 

 

where r,η/J = 1, but I prefer to keep the form of Eq. (1.31) and (1.33). The covariant 

and contravariant base vectors satisfy the orthonormal property, Eq. (1.34). 

 

 
1

 with , 1,2,3
0

i i

j j

i j
i j

i j



   


g g   (1.34) 

 

where δi
j is the Kronecker delta. However, it should be also noted that the orthonormal 

property does not hold among the covariant base vectors or the contravariant base 

vectors. Thus, coordinate system (ξ, η, ζ) is a curvilinear coordinate system with non-

orthogonal bases. As long as being bases vectors, a general vector v can be expressed 

by their linear combinations.  

 

 i

ivv g   (1.35) 
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 i

ivv g   (1.36) 

 

where the repetition of the sub or super script i denotes the “summation” operation 

commonly used in tensor analysis. Here vi is the contravariant component and vi is the 

covariant component of the vector v. They are listed in Table 1. 

 

 i iv  v g   (1.37) 

 i iv  v g   (1.38) 

 

Table 1 Contravariant & covariant components of vector v. 

i vi vi 

1 , x

1
r v

J
  xv  

2  r , θ

1 1
v r v

J Jr
   , rr v  

3 , θ

1
r v

Jr
  , r θr v rv   

 

A transformation tensor, Q, could be defined based on the covariant base vectors, 

Eq. (1.28) to (1.30). It is easy to verify that Q represents a tensor which transforms 

Eq. (1.21) into Eq. (1.28) to (1.30), and is expressed by Eq. (1.39). 

 

 , 1,2,3i i i  g Q e   (1.39) 

 

The matrix form of tensor Q is Eq. (1.40). 

 

      

     
, ,

, ,

1 0 0

0 cos cos sin

0 sin sin cos

r r r

r r r

 

 

  

  

 
 

  
  

Q   (1.40) 

 

Let the determinant of Q be Jtr. 

 

 tr

,J r r Jr    (1.41) 

 

From the geometric interpretation of the covariant base vectors, they are closely related 

to Jtr, e.g. Eq. (1.42). 

 



Finite Volume Method with Coordinate Transformation between Two Curvilinear Coordinate Systems 

10 / 49 

   tr

3 1 2 J  g g g   (1.42) 

 

where “×” represents the cross product of two vectors. Recall the orthogonality between 

gi and gi, Eq. (1.34), we could know that g3 is in the same direction of g1×g2. Therefore, 

a scalar parameter ag should exist so that 

 

  3

1 2 g
g g g   (1.43) 

 

Considering Eq. (1.42), we can find 

 

  3 tr

3 3 1 2 1J      g g
g g g g g   (1.44) 

 

Obviously αg = 1/Jtr. Then we have 

 

 tr 3

1 2J  g g g   (1.45) 

 

It is easy to verify that 

 

 tr 1

2 3J  g g g   (1.46) 

 tr 2

3 1J  g g g   (1.47) 

 

From a geometrical point of view, and based on the work of Kwak and Kiris [5], 

we could see that in 3D space, the module of vector gi×gj equals the area of the unit 

surface element whose normal vector is also gi×gj. And the infinitesimal surface 

elements with their normal vector pointing to the ξ, η and ζ directions are 

 

 

 

 

 

ξ tr 1

2 3

η tr 2

3 1

ζ tr 3

1 2

d d d d d d d

d d d d d d d

d d d d d d d
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s J
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     
 

     
 

     
 

     
        

    
     

        
    

     
        

     

R R
n g g g

R R
n g g g

R R
n g g g

  (1.48) 

 

where, again, n is the unit normal vector of the surface element. Eq. (1.48) has 

significant importance when we derive the integral over a CV in coordinate system (ξ, 

η, ζ). 
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Until this point we have discussed the important building blocks for derivation of 

FVM with coordinate transformation between curvilinear coordinate systems. I want to 

emphasis that the above content is not the same with that discussed in classical books 

on FVM. In classical FVM theory, the coordinate transformation is almost always 

performed between Cartesian coordinate system and curvilinear counterpart. In those 

derivations things are simple and straight forward, and there is no need to start from the 

basics of vectors. But the obtained results are too concise for one to grasp the 

fundamental essence of coordinate transformation. Conversely, for coordinate 

transformation between curvilinear coordinate systems, we should always start from 

the very basics of vectors, their expressions and calculations. 

Now we have all we need, let’s move to the topic of FVM. 

 

3 The grid 

The fluid domain should be discretized into cells and grid to form control volumes. The 

specific fluid domain used in the current article possesses an annular shape, as 

illustrated in Fig. 1. A grid with fully orthogonal hexahedral cells is utilized. As for 

“fully orthogonal” I mean that every edge of any single cell is parallel to the base 

vectors of the coordinate system (ξ, η, ζ). A sample hexahedral cell is shown in Fig. 3. 

From now on, we could use the term “control volume” to refer to this cell. Following 

the convention described in the work of Versteeg and Malalasekera[6], define the 6 

directions to be denoted by E(east), W(west), N(north), S(south), T(top) and B(bottom). 

Further, E to B are also used to indicate the 6 neighbouring points of a center point P. 

WE, SN and BT directions are used as the ξ, η and ζ directions. For each face of the 

CV, e, w, n, s, t and b are used as the face indices. 

Although the cell is hexahedron, the grid points are not evenly distributed. The 

primary reason is that the grid points has to be clustered near the rotor and stator 

surfaces to fulfill the requirements of the turbulence model and to resolve the steep 

gradients of the physical properties in the near-wall regions. In the development of the 

specific code, some techniques of FVM with unstructured grid are adopted to cope with 

the situation of unevenly distributed grid points.  

An working example 2D grid is shown in Fig. 4. 
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Fig. 3 Hexahedral grid cell. Control volume 

 

 

Fig. 4 Working example of grid generation for annular clearance geometry. 

 

A storage strategy of co-located grid is used, meaning that all the physical 

properties including velocity, pressure and turbulence properties are stored at the center 

point of a cell.  

 

4 Governing equations 

The simulation material is isothermal incompressible fluid. The governing equations 

consist of three momentum equations and one continuity equation. 

 

 0 u   (1.49) 

     m

eff s
t




   

 
      

u   (1.50) 

 

where ϕ is an arbitrary scalar, and u is the velocity vector [u, v, w]T. μeff is the effective 

viscosity. It is the sum of the dynamic viscosity μ and the turbulent viscosity μt. 
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    eff t   (1.51) 

 

The linear operators in Eq. (1.49) and (1.50) are as follows. They are all expressed in 

cylindrical coordinate system. 

 

 x r θ

1
= +

x r r 

  
 

  
e e e   (1.52) 

   θx
r

1 1
= +

vv
rv

x r r r 

 
 

  
v   (1.53) 

  
1 1 1

= + r
x x r r r r r 

          
          

          
  (1.54) 

 

where v is a general vector and Γ represents a diffusion parameter. The other symbols 

in Eq. (1.50) are listed in Table 2. 

 

Table 2 Momentum equations. 

ϕ 
ms  

u 
m eff

eff eff eff

1 1
u

p u v w
s r

x x x r r x r x
  



           
         

           
 

v 

m eff
eff eff

eff eff

2 1

1 1

v

p w v u
s

r r r r x r

v w ww
r r

r r r r r r r

 


  


      
       

      

        
      

       

 

w 

m eff
eff eff

eff eff

1 1 1 1

1 1 2 1 1

w

p u v w
s r

r x r r r r r

w v v w w vw

r r r r r r r r

 
  

  
  

         
        

        

        
         

       

 

 

5 Schemes for the momentum equations 

Some schemes for the momentum equations are discussed in this section. To summarize, 

the second order central difference scheme, the second order interpolation scheme and 

the TVD scheme[6] are used for the diffusion term, pressure gradient term and the 

convection term, respectively. For the source terms, both the Gaussian theorem and 

averaged volume integral are adopted. 

 

5.1 The integral form of the governing equation 

One of the key aspects of FVM is that the governing equation is first integrated over a 
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CV, then it the convection and diffusion terms are turned into surface integral by using 

the Gaussian theorem. For a general scalar variable ϕ, we have 

 

 

    

 

 

 

 

   

CV CV CV

CV CV CV CV

CV CV CV

CV CV CV CV

1 2 3 4

d d d

d d d d

V V V

V S S V

v v s v
t

v s s s v
t

 

 


  


   

 
      

 




      



  

   

u

u n n

  (1.55) 

 

where VCV is the volume of the CV, vCV is the infinitesimal volume element. SCV and 

sCV are the area and infinitesimal surface element of the faces of the CV. n is the unit 

normal vector of sCV. The terms marked by (1) to (4) are the time changing rate, 

convection term, diffusion term and source term of the governing equation of ϕ. This 

equation becomes the momentum equation if ϕ is chosen to be a component of the 

velocity vector. And the pressure gradient term is contained in the source term. Let’s 

ignore term (1) and keep (4) for later discussion. The first assignment is deriving the 

expressions for the schemes of (2) and (3).  

In Eq. (1.55), the terms of (2) and (3) represent the net flux of physical properties. 

Generally for a vector v, the net flux across the faces of a CV is 

 

 
CV

CVd

S

s v n   (1.56) 

 

In coordinate (ξ, η, ζ), using the notations of Section 3, and based on Eq. (1.48), 

Eq. (1.56) can be written as 

 

 

       

   

CV

ξ ξ η η
CV

b t s n

ζ ζ

e w

d d d d d

d d

S

s s s s s

s s

         

   

    

 

v n v n v n v n v n

v n v n

  (1.57) 

 

Using Eq. (1.35), we have 
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               

       

CV

CV

ξ ξ η η

b t s n

ζ ζ

e w

1 tr 1 1 tr 1 2 tr 2 2 tr 2

1 1 2 2

b t s n

3 tr 3 3 tr 3

3 3

e w

1 tr

b

d

d d d d

d d

d d d d d d d d

d d d d

d d

S

i i i i

i i i i

i i

i i

s

v s v s v s v s

v s v s

v J v J v J v J

v J v J

v J

       

   

 



        

   

        

   

 



   

 

   

 

v n

g n g n g n g n

g n g n

g g g g g g g g

g g g g

1 tr 2 tr 2 tr

t s n

3 tr 3 tr

e w

d d d d d d

d d d d

v J v J v J

v J v J

     

   

  

 

   

 

 

 (1.58) 

 

Define general “area” of CV face to be 

 

 

tr tr

b t

tr tr

s n

tr tr

e w

A A

A A

A A

 

 

 

    


   
    

  (1.59) 

 

Then the discretized form of Eq. (1.58) is 

 

 

       

   

CV

CV 1 tr tr 1 tr tr 2 tr tr 2 tr tr

b t s nb t s n

3 tr tr 3 tr tr

e we w

d

S

s v J A v J A v J A v J A

v J A v J A

     

 

 v n

  (1.60) 

 

Considering Table 1 and Eq. (1.41), Eq. (1.60) can be further modified as 

 

 

   

     

   

CV

CV tr tr

, x b , x tb t

tr tr

r , θ s r , θ n
s n

tr tr

, θ e , θ we w

d

S

s rr v A rr v A

rv r v A rv r v A

r v A r v A

 

 

 

   

     

 

 v n

  (1.61) 

 

Then we can define three components similar to the contravariant components 
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  

f1 tr 1

, x

f2 tr 2

r , θ

f3 tr 3

, θ

V J v rr v

V J v rv r v

V J v r v







  


   


 

  (1.62) 

 

Insert Eq. (1.62) into (1.61) 

 

 
CV

CV f1 tr f1 tr f2 tr f2 tr f3 tr f3 tr

b b t t s s n n e e w wd

S

s V A V A V A V A V A V A        v n   (1.63) 

 

In order to be distinguished from the contravariant components, Eq. (1.62) will be 

referred to as “face components”. Eq. (1.64) gives the relation between the face 

components and the original components of vector v. 

 

 

f1

x

,

,f2 f3

r

,

f3

θ

,

1

V
v

rr

r
v V V

r r

V
v

r













  

    
  

 


  (1.64) 

 

5.2 Convection and diffusion terms 

Let’s start with the convection term in Eq. (1.55). Using Eq. (1.62) list every face 

component of velocity vector u. 

 

 1

,

fU rr u   (1.65) 

  2

,

fU rv r w     (1.66) 

 3

,

fU r w   (1.67) 

 

According to Eq. (1.63) and using Eq. (1.65) to (1.67) the convection term is  
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     

   

   

CV

CV 1 tr 1 tr

b t

2 tr 2 tr

s n

3 tr 3 tr

e w

d f f

S

f f

f f

s U A U A

U A U A

U A U A

     

   

   

   

  

  

 u n

  (1.68) 

 

Define the flux of each CV face to be Eq. (1.69) to (1.71). 

 

    1 tr 1 tr

b tb t
,f fm U A m U A      (1.69) 

    2 tr 2 tr

s ns n
,f fm U A m U A      (1.70) 

    3 tr 3 tr

e we w
,f fm U A m U A      (1.71) 

 

Generally, let F be the flux of face q 

 

 m

q qF m   (1.72) 

 

where, q can be b, t, s, n, e and w. Then (1.68) could be written as 

 

  
CV

CV m

q q

q

d

S

s F    u n   (1.73) 

 

Use TVD scheme to obtain the value of ϕ on the CV face[7]. 

 

 
 

 
TVD

FLF q

q qU qD qU
2

r
        (1.74) 

 

where, ϕqD and ϕqU are the values at the center points of the downstream and upstream 

control volumes respect to face q. rTVD
q is expressed as 

 

 
qU UDTVD

q

qD qU

2
1r



 

 
 



r
  (1.75) 

 

where rUD is a vector that starts from the center point of the upstream CV and points to 

the center point of the downstream CV. The inner product between the gradient vector 

and r will be discussed later. At this point, we define the center point of the neighboring 

CV to be Q. In order to determine which of the two points, P and Q, should be the 

upstream point, the velocity vector of face q should be evaluated. It could be done by 
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investigating the sign of the components of velocity u at point P expressed as Eq. (1.65) 

to (1.67). And a symbol αq can be defined according to Table 3. 

 

Table 3 αq values. 

face index 
Uf1 Uf2 Uf3 

< 0 > 0 < 0 > 0 < 0 > 0 

b 1 0 -- -- -- -- 

t 0 1 -- -- -- -- 

s -- -- 1 0 -- -- 

n -- -- 0 1 -- -- 

e -- -- -- -- 1 0 

w -- -- -- -- 0 1 

-- means not relevant to αq 

 

For TVD scheme, ϕq can be expressed as 

 

 

  

       

q q P q Q

TVD

FLF q q P q Q q P q Q

1

1
1 1

2
r

    

        

  

      
 

  (1.76) 

 

where ψFLF is the flux limiter function[6]. There are various types of flux limiter 

functions[8-12], and for this article I choose the one given by Van Albada[9]. 

 

  
 

 

2
TVD TVD

q qTVD

FLF q 2
TVD

q1

r r
r

r






  (1.77) 

 

Then Eq. (1.73) can be written as 

 

     
CV

CV m TVD

q q P q Q

q

d 1

S

s F s          u n   (1.78) 

 

where 

 

        TVD m TVD

q FLF q q P q Q q P q Q

q

1
1 1

2
s F r               

    (1.79) 

 

Let’s move on to the diffusion term. The gradient vector of ϕ should also be written 

in the form of contravariant components. The gradient vector of ϕ in the original 

cylindrical coordinate system is 
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 x r θ

1

x r r

  




  
   

  
e e e   (1.80) 

 

Every face component (Eq. (1.62)) of vector   is 

 

  
1 2

, , ,

1f
rr rr rr

x J
  

  


 

  
   

  
  (1.81) 

 

   

 

 

2

,

, , ,

2

, , ,

2

, , ,

2 2

1

1 1 1

1 1 1

1 1
1

f
r r

r r

r r r r
J r J

r r r r
J Jr Jr

r r r
r r

J r J r



  

  

  

 




  

  

  

  

 

 

 
   

 

    
      

    

  
   

  

    
           

  (1.82) 

 

 
3

,

, , ,

2

, , ,

2 2

1

1 1

1 1

f
r

r

r r r
r J

r r r
r r

J r J r



  

  






 

 

 

 


 



  
   

  

   
   

  

  (1.83) 

 

In fact, Eq. (1.81) to (1.83) take the same form with that obtained by Hong[13]. 

We can define a set of geometry parameters G 

 

 ξ 2

1 ,G r   (1.84) 

 

2

, , ,η η

2 32 2
1 ,

r r r
G G

r r

  
      (1.85) 

 

2

, , ,ζ η ζ

2 3 32 2
,

r r r
G G G

r r

  
      (1.86) 

 

Based on Eq. (1.63), we could revise the diffusion term of Eq. (1.55) 
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 
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 (1.87) 

 

Rearrange the terms in Eq. (1.87). 
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  (1.88) 

 

where strans is the source term that arises from the coordinate transform. 
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  (1.89) 

 

The detailed procedure to calculate strans will be discussed later (Eq. (1.115)). And 

now the diffusion term can be expressed as 
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  (1.90) 

 

where δ is the absolute value of the coordinate difference between point P and Q in 

coordinate system (ξ, η, ζ). Define parameter Dq,Q 
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J


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  (1.91) 

 

In Eq. (1.91), the values of G are listed in Table 4. 

 

Table 4 G Values of control volume surfaces. 

Face index  b t s n e w 

G Gξ
1 Gη

2 Gζ
3 

 

Then Eq. (1.90) turns to be 
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Again, ignoring the time derivative term and using Eq. (1.78) and (1.92), the 

discretized form of Eq. (1.55) is 
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Rearrange. 
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  (1.94) 
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where sTVD and strans are known as the deferred correction terms[6, 14]. 

 

5.3 Source terms 

First of all, it should be clear that in the original cylindrical coordinate system, the 

source terms of the momentum equations have different type of source terms. For any 

momentum equation, the source terms could be classified into three categories. Take 

the source terms of the momentum equation of θ direction as an example. The integral 

form of the source terms is 
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 (1.95) 

 

In this article, the source terms in a momentum equation are classified into three 

types denoting by sp, svis and scyl. These three source terms are the pressure gradient 

source, viscosity source and special source term. Where the special source term, scyl, is 

the combination of special terms that directly associated to cylindrical coordinate 

system. The discretization method of each type of source term will be separately 

discussed. 

 

5.3.1 Pressure gradient source term 

As mentioned in the previous section, a second order scheme will be used to treat the 

pressure gradient source term. Like all the terms in Eq. (1.55), the pressure gradient 

source term, being one of the elements of the source term, takes the form of a integral 

over the CV. Generally, the scheme for the pressure gradient source term involves the 

application of the Gaussian theorem to transform the volume integral into surface 

integral. This requires that the pressure gradient of each momentum equation should be 

expressed in the form of divergence of a vector field. Using p instead of peff for 
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convenience, we have 

 

 p p

x x x r θ, +0 +0
p

p
x


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v v e e e   (1.96) 

 p p
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p
r r
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

v v e e e   (1.97) 

 p p

θ θ x r θ

1
, 0 +0 +

p
p

r 


   


v v e e e   (1.98) 

 

The reason of Eq. (1.97) taking a different expression to the others is that the 

gradient operator has the special form, Eq. (1.99), in a cylindrical coordinate system. 

 

   θx r
x x r r θ θ

1 1 vv rv
v v v

x r r r 

 
     

  
e e e   (1.99) 

 

The volume integral of Eq. (1.96), (1.97) and (1.98) are needed. The detailed 

procedure is the same with that described in Section 5.2. Similar to the convection and 

diffusion terms, the face component of Eq. (1.96) to (1.98) are listed in Table 5, based 

on Eq. (1.63). 

 

Table 5 Pressure components for volume integral. 

i  
p

x

fiV   
p

r

fiV   
p

θ

fiV  

1 ,rr p   0 0 

2 0 rp    ,r p  

3 0 0 ,r p   

 

From Table 5, the integrals of the pressure source term of each momentum 

equation are shown in Eq. (1.100) to (1.102). 
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  (1.101) 
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  (1.102) 

 

The subscript (ξ, η, ζ) in Eq. (1.101) means that the limits of the integral are defined in 

coordinate system (ξ, η, ζ). And this integral has to be approximated by averaged 

volume integral, Eq. (1.103).  

 

 

 
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CV,tr

ξ,η,ζ
d d d

V

p
rJ pJV

r
      (1.103) 

 

where  
CV,tr

ξ,η,ζ
V  is the general volume of the CV in coordinate system (ξ, η, ζ). 

 

  
CV,tr

ξ,η,ζ
V         (1.104) 

 

Eq. (1.100) to (1.102) require that the pressure on face q of the CV to be calculated. 

This face pressure is defined as pq. A second order central difference scheme, which is 

used in Ansys FLUENT[15], is applied in this article. The sketch in Fig. 5 shows two 

CVs straddling face q, and is served as an illustration of the scheme. This scheme is 

described by Eq. (1.105) 

 

 

Fig. 5 The pressure on the face between two CVs, pq. 

 

    q P Q P qP Q qQ

1 1

2 2
p p p p p      r r   (1.105) 

 

where rqP and rqQ are vectors pointing to the center of face q, starting from point P and 

Q, respectively. ∇pP and ∇pQ are the pressure gradient vectors at point P and Q in 

coordinate system (ξ, η, ζ). Similar to the TVD scheme, the inner product between the 

pressure gradient vector and vector r will be discussed in following section. (Note that 
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rqP and rqQ will be approximated by sqP and sqQ) 

It should be pointed out that the symbol for pressure in the governing equations is 

peff. peff stands for “effective pressure”. peff takes the form of 

 

 eff

2

3
p p k    (1.106) 

 

In reality, the actual numeric value of the product of density ρ and turbulent kinetic 

energy k is relatively much smaller than the static pressure p. Therefore, the 

contribution of ρk to p is safely ignored. Thus 

 

 effp p   (1.107) 

 

For simplicity, we can use p to substitute peff in this article. 

 

5.3.2 Viscous source terms 

The viscous source terms in the momentum equations can be handled directly by 

Gaussian theorem. Take the term svis
θ in Eq. (1.95) for example and make up a dummy 

vector, Eq. (1.108). 
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The dummy vectors for the other two momentum equations can be written as 
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List the associated face components of Eq. (1.108) to (1.110) in Table 6 according to 

Eq. (1.62) . 

 

Table 6 Contravariant components of the viscous source terms. 
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The partial derivatives in Table 6 are expressed in there original cylindrical 

coordinate system. The transformed partial derivatives of arbitrary scalar ϕ are listed as 
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They are in fact the same with Eq. (1.16) to (1.18). They are repeated here to facilitate 

the usage of Table 6. If we use vvis to represent any one of the viscous source terms, the 

integrals can be expressed in a universal form 
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  (1.114) 

 

To obtain the physical property on face q, an interpolation method using values at 

neighboring center points is introduced. For general scalar value ϕ, let superscript int 

denote the interpolated value[16]. 

 

 int

q P P Q Qg g      (1.115) 

 

where gP and gQ are the interpolation weights. These weights are defined in a geometric 

sense, and are illustrated by Fig. 6 and Eq. (1.116). 
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Fig. 6 Geometry weighted average. 
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One thing should be cleared that in general case of grid structure, the line PQ intersects 

face q at a point q’ other than the center of face q. However, in the current article, the 

grid is fully orthogonal after the coordinate transformation. Under this circumstance the 

point q’ is the center of face q. 

The value on face q in Eq. (1.114) turns to be 
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5.3.3 Special source terms 

The special source term scyl, in Eq. (1.95) could be approximated by calculating the 

product (Eq. (1.104)) of volume and the physical property at the center point of the CV. 

In r direction 
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   (1.118) 

 

In the circumferential (θ) direction 
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The x direction is ignored since scyl
x = 0. The partial derivatives in Eq. (1.118) and 

(1.119) could be handled by Eq. (1.111) to (1.113).  

 

5.4 The general form of the momentum equations 

Sum up all the source terms of momentum equations and write Eq. (1.120). 

 

 

  TVD trans p vis cylS s s s s s 
       (1.120) 

 

The actual meaning of scalar ϕ changes according to each momentum equation. Define 

a new parameter am 
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


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
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


  (1.121) 

 

Based on Eq. (1.94) and (1.120), the discretized momentum equation could be 

expressed as general linear equation. 

 

 m m

P P Q Q

q,Q

a a S     (1.122) 

When the time derivative is ignored and assume that pressure is know, the velocity 

components could be obtained by solving Eq. (1.122) in each coordinate direction. A 

fact that I want to point out is that am
P ≠ 0. 

It is worth to be noted that the parameters (am) of Eq. (1.122) for different 

momentum equation are the same. 

Some first-order terms, e.g. scyl in Eq. (1.95), emerge in the source terms. 

Moukalled et. al.[16] recommended that the source term could be divided into zero-order 

and first-order terms. 
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 0 1S S S      (1.123) 

 

where ϕ is a scalar. The stability of the numerical solution process will be more stable 

if the term S1
ϕϕ is moved from the right hand side to the left. However, this treatment 

leads to different am parameters for each momentum equation and further scaling up 

the computational cost. Similar issues will be seen in the treatment of boundary 

conditions. Some other researcher, e.g. Ferziger and Perić[14], claimed that numerical 

stability can still be satisfactory if we do not follow Eq. (1.123). So does this article. 

The linear equation of Eq. (1.122) is always solved by iterative solvers. For these 

solvers under-relaxation is needed for most of the cases. For the momentum equation, 

the implicit under-relaxation method is adopted. Let λu be the under-relaxation factor 

for momentum equation and modify Eq. (1.122). 
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 


  

u

u u
  (1.124) 

 

where ϕ(n) is the numeric solution of the previous iteration n. And 

 

 0 1 u   (1.125) 

 

6 The pressure-velocity coupling in co-located grid 

considering coordinate transformation 

As mentioned in the previous sections, considering the additional complexity brought 

by the coordinate transformation the pressure-velocity coupling will be resolved by the 

SIMPLE method. Two key aspects of the SIMPLE method in co-located grid is the 

momentum interpolation and the equation of pressure correction. 

 

6.1 Momentum interpolation 

In co-located grid, one of the key issue of the SIMPLE algorithm is how to obtain the 

velocity on CV face. Let start from the discretized momentum equation, Eq. (1.124), at 

point P. Separate pressure source term sp from Sϕ. Take the x direction for example. sp 

is approximated by 
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Similarly, for the other two directions 
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Remember that am
P ≠ 0, divide am

P on both sides of Eq. (1.124). Then write Eq. (1.129) 

to (1.131) based on Eq. (1.126) to (1.128). 
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where 
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   p

xxuS S s    (1.136) 

   p

rrvS S s    (1.137) 
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   p

θθwS S s    (1.138) 

 

Note that Eq. (1.129) to (1.138) are defined at the center point of CV. The 

momentum equation on face q could be obtained by interpolation of the momentum 

equations on points P and Q, using Eq. (1.115). The interpolated equations on face q 

are 
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Similar expressions could be found in other work[13, 17-20]. In fact Eq. (1.139) is the 

direct result of the momentum interpolation method of Rhie and Chow[21]. Further, 

based on the work of Moukalled et. al.[16], we can write 
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  (1.140) 

 

Thus 
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And we can write the following approximations. 
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  (1.142) 

 

Insert Eq. (1.141) and (1.142) into Eq. (1.139). 
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We need the covariant components of the velocity vector on CV face q. Note that we 

cannot use Eq. (1.62) but must apply Table 1. 
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         
                    

u

  (1.146) 
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Similar results are also obtained by Yakinthos et. al.[22]and Qu et. al.[23]. To simplify the 

expressions, define new parameters for later use. 

 

  
int

ξ

1,q , , q
q

1
d r dr

J
 

 
  
 

  (1.147) 

  
int

int , ,η

2,q q
q q q

1 r r
d d d

J Jr r

      
      
     

  (1.148) 

 

int

, ,η

3,q

q q

r r
d d

Jr r

    
    
   

  (1.149) 

 

int

, ,ζ

2,q

q q

r r
d d

Jr r

    
    
   

  (1.150) 

 

int

, ,ζ

3,q

q q

r r
d d

Jr r

    
    
   

  (1.151) 

 

Then Eq. (1.144) to (1.146) turn into 

 

        
 

 
  

int
int ,int

1 1 ξ 1 1

1,qq q q q
q q

1
n np p

u u d u u
 

     
                

u
  (1.152) 

 

   

   
 

 
  

int
int

2 2 η

2,qq q
q q

int
,int

2 2 η

3,qq q
q q

1
n n

p p
u u d

p p
u u d

 


 

     
             

     
               

u

  (1.153) 

 

   

   
 

 
  

int
int

3 3 ζ

3,qq q
q q

int
,int

3 3 ζ

2,qq q
q q

1
n n

p p
u u d

p p
u u d

 


 

     
             

     
               

u

  (1.154) 

 

6.2 Pressure correction equation 

The SIMPLE algorithm is an iterative process. Let the velocity field and pressure field 

obtained in the previous iteration to be u(n)=[u(n),v(n),w(n)]T and p(n), respectively. n 

represents the nth step of iteration. 
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6.2.1 The net mass flux and its correction 

In the iteration of the SIMPLE algorithm, at iteration step n + 1, take u(n) and p(n) from 

the previous iteration as the input and solve all the momentum equations in form of 

Eq. (1.124). The solution is an intermediate velocity field, defined as u*. Being the 

solution of the momentum equations, u* does not necessarily satisfy the continuity 

equation. Then a correction of u* is followed. 

The continuity equation is treated in the same way as the momentum equation. 

Thus first take the integral form of the continuity equation then use the Gaussian 

theorem to transform the volume integral into surface integral. The surface integral is 

indeed the net mass flux of the CV. Using Eq. (1.63) and Eq. (1.69) to (1.71), the net 

mass flux is 

 

 
CV CV

CV CV

U,q

q

d d

V S

v s m     u u n   (1.155) 

 

Using Eq. (1.62) we could obtain the face components of u* and the real velocity 

field u. These components are written as Ui and Ui*. Ui and Ui* satisfy the following 

relation. 

 

 * ,ci i iU U U    (1.156) 

 

where Ui,c is the velocity correction component. Apply the same definitions for the 

pressure field. 

 

   cn
p p p    (1.157) 

 

From now on, the continuity equation becomes 

 

  * c

q q
q q

0m m m      (1.158) 

 

where ṁ*
q and ṁc

q are the mass flux on CV face q, based on ui* and ui,c. Now we apply 

the momentum interpolation and rewrite Eq. (1.152) to (1.154) by u*. 

 

 

   
   

   
 

 
  

,int
int

1* 1* ξ

1,qq q
q q

,int
1 1

q q
1

n n

n n

p p
u u d

u u

 



     
            

  u

  (1.159) 
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   
   

   
 

 
  

   

,int
int

2* 2* η

2,qq q
q q

,int
,int

2 2 η

3,qq q
q q

cr

1

n n

n n
n n

p p
u u d

p p
u u d

 


 

     
            

     
              

u

  (1.160) 

 

   
   

   
 

 
  

   

,int
int

3* 3* ζ

3,qq q
q q

,int
,int

3 3 ζ

2,qq q
q q

cr

1

n n

n n
n n

p p
u u d

p p
u u d

 


 

     
            

     
              

u

  (1.161) 

 

From Eq. (1.152) to (1.154) subtract Eq. (1.159) to (1.161), respectively. We obtain 

the following correction components. 

 

    
int

c c
int

1,c 1,c ξ

1,qq q
q q

p p
u u d

 

     
            

  (1.162) 

    
int int

c c c c
int

2,c 2,c η η

2,q 3,qq q
q q q q

cr

p p p p
u u d d

   

             
                              

 (1.163) 

    
int int

c c c c
int

3,c 3,c ζ ζ

3,q 2,qq q
q q q q

cr

p p p p
u u d d

   

             
                              

 (1.164) 

 

The core approximation of the SIMPLE algorithm is that the velocity correction 

components are only depend on the pressure gradient, ignoring all the contribution from 

the velocity correction components of neighboring CVs. That is to say, ignoring all the 

terms marked by superscript “int” in Eq. (1.162) to (1.164). Here the terms marked by 

“cr” are also ignored as suggested by Hong[13]. Then Eq. (1.162) to (1.164) become 

 

  
c

1,c ξ

1,qq
q

p
u d



 
   

 
  (1.165) 

  
c

2,c η

2,qq
q

p
u d



 
   

 
  (1.166) 
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  
c

3,c ζ

3,qq
q

p
u d



 
   

 
  (1.167) 

 

Now Eq. (1.158) turns into 

 

 c *

q q

q q

m m     (1.168) 

 

where 

 

 
   

   

   

*

q

q

1* tr 1* tr

b t

2* tr 2* tr

s n

3* tr 3* tr

e w

tr tr

tr tr

tr tr

m

u J A u J A

u J A u J A

u J A u J A

 

 

 

  

  

  



  (1.169) 

 

   

   

   

c

q

q

c c
ξ tr ξ tr

1,b 1,tb t
b t

c c
η tr η tr

2,s 2,ns n
s n

c c
ζ tr ζ tr

3,e 3,we w
e w

tr tr

tr tr

tr tr

m

p p
d J A d J A

p p
d J A d J A

p p
d J A d J A

 
 

 
 

 
 

    
    

    

    
    

    

    
    

    



  (1.170) 

 

6.2.2 Pressure correction equation 

After close inspection of the RHSs (right hand side) of Eq. (1.170), one could find out 

that the terms are very similar to the diffusion terms in the momentum equations. We 

could directly apply the similar strategy that we have just used to deal with the diffusion 

terms. 

 

 
c cc

B P

PBb

=
p pp

 

  
 

 
  (1.171) 

 
c cc

T P

PTt

=
p pp

 

  
 
 

  (1.172) 
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c cc

S P

PSs

=
p pp

 

  
 

 
  (1.173) 

 
c cc

N P

PNn

=
p pp

 

  
 
 

  (1.174) 

 
c cc

E P

PEe

=
p pp

 

  
 

 
  (1.175) 

 
c cc

W P

PWw

=
p pp

 

  
 
 

  (1.176) 

 

Based on Eq. (1.169) to (1.176), we obtain the pressure correction equation. 

 

 c c c c *

P P Q Q q

Q q

+ =a p a p m    (1.177) 

 

where 

 

 
   ξ tr ξ tr

1,b 1,tc cb t
B T

PB PT

= , =

tr trd J A d J A
a a

 

 
    (1.178) 

 
   η tr η tr

2,s 2,nc cs n
S N

PS PN

= , =

tr trd J A d J A
a a

 

 
    (1.179) 

 
   ζ tr ζ tr

3,e 3,ec ce w
E W

PE PW

= , =

tr trd J A d J A
a a

 

 
    (1.180) 

 c c

P Q

Q

a a    (1.181) 

 

Solve Eq. (1.177) numerically to obtain the pC field. Then correct the intermediate 

velocity field by Eq. (1.182) to (1.184). 

 

  
 

 
c

1
1 1*

P ,P P
P

n p
u u d r



  
   

 
  (1.182) 

  
 

 
c

1
2 2*

PP P
P

n p
u u d



  
   

 
  (1.183) 

  
 

 
c c

1
3 3*

P , ,P P

P

1n p p
u u d r r

r
 

 

    
     

   
  (1.184) 
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Note that the correction is done at the center point P. As for the pressure, use Eq. (1.185). 

 

    1 p cn n
p p p


    (1.185) 

 

where λp is the under-relaxation factor for pressure correction. The values of the under-

relaxation factors are listed in Table 7. 

The above is the SIMPLE algorithm considering the coordinate transformation. 

 

Table 7 Under-relaxation factors of various equations. 

equation under-relaxation factor value 

momentum eqs. λu 0.7 

pressure correction eqs. λp 0.3 

eqs. of other scalars λs 0.8 

 

7 Other scalars 

For incompressible turbulent flow. Some other scalars are still needed to be solved, e.g. 

the turbulence properties. 

Since the equations for scalars are usually take the form of standard transport 

equation, the methodologies discussed so far are directly applicable. In other words, the 

convection, diffusion and source terms in the scalar transport equation are handle in the 

same way as for the momentum equations. (The under-relaxation method is also the 

same, and the recommended under-relaxation factor is listed in Table 7.) 

 

8 Gradient reconstruction 

One issue that is deliberately ignored is the calculation of the gradient of physical 

properties and the inner product between the gradient vector and general vector. 

Gradient vector is needed by lots of procedures, e.g. the source terms and 

momentum interpolation. This article adopt the least-square gradient reconstruction[6, 

16] method to calculate gradients. Since the underlying coordinate system is curvilinear, 

special treatment should be expected. 

For an arbitrary scalar ϕ in the cylindrical coordinate system (x, r, θ), the relation 

among the values at the CV center P and the neighboring CV centers could be 

approximated by Eq. (1.186), which, in fact, is a Taylor expansion. 

 

    Q P PQP P
      s   (1.186) 

 

where sPQ is actually a spatial curve expressed by Eq. (1.187). 
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    PQ PQ x PQ r PQ θP P
x r r    s e e e   (1.187) 

 

where δxPQ, δrPQ and δθPQ are the three coordinate differences from point Q to P. 

 

 

PQ Q P

PQ Q P

PQ Q P

x x x

r r r





  

  


 
  

  (1.188) 

 

Note that Eq. (1.186) to (1.188) all have to be evaluated at the center point P of 

the CV under question. This means that the base vectors should be only specified at 

point P. 

Now retrieve the expression of the gradient vector of scalar ϕ in cylindrical 

coordinate system. 

 

 x r θ

1

x r r

  




  
   

  
e e e   (1.189) 

 

Its covariant components are 

 

   11 x

 
 



 
    

 
g   (1.190) 

   2 ,2
r

r


 
 



 
    

 
g   (1.191) 

   3 ,3
r

r


  
 

 

  
     

  
g   (1.192) 

 

Arrange the terms of Eq. (1.189) in the form of Eq. (1.36). 

 

 
1 2 3  


  

  
   

  
g g g   (1.193) 

 

Now if we use the contravariant components to represent sPQ, the inner product in 

Eq. (1.186) will become extremely easy to calculate. The contravariant components of 

sPQ are 

 

  
1

PQ , PQP
P

1
s r x

J


 
  
 

  (1.194) 
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    
2

PQ PQ , PQP
P

1 1
s r r

J J
 

 
   
 

  (1.195) 

  
3

PQ , PQP
P

1
s r

J


 
  
 

  (1.196) 

 

Then 

 

              
1 2 3

PQ PQ 1 PQ 2 PQ 3P P PP P P P
s s s  s g g g   (1.197) 

 

And thus, Eq. (1.186) becomes (the subscript P in some terms are ignored) 

 

        Q P PQ P PQP P

i

i
i

s          s   (1.198) 

 

where i = 1, 2, 3. Move ϕP from the RHS to the LHS. 

 

            
1 2 3

PQ PQ PQ Q P1 2 3
s s s             (1.199) 

 

Eq. (1.199) could be easily written in the form of a set of linear equations. Use the 

matrix form 

 

     =  Δ   (1.200) 

 

When there are m neighbors around the center CV,    is a m by 1 column vector, 

[Δ] is a m by 3 matrix,    is a 3 by 1 column vector (do not mix up with vector 

 ). The above vectors and matrix are 

 

  
Q1 P

Q P 1m m

 



 


 
 

   
  

  (1.201) 

  

     

     

1 2 3

PQ PQ PQ1 1 1

1 2 3

PQ PQ PQ
3m m m m

s s s

s s s


 
 
 
 
 
 

Δ   (1.202) 
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  

 

 

 

P

1

2

P

3

P







 








  
  

  
       

       
        

  
   

  (1.203) 

 

The set of linear equations Eq. (1.200) is generally overdetermined. To obtain a 

best approximated solution, the least-square method could be used. Multiply the 

transpose of [Δ] on both sides of Eq. (1.200). 

 

         
T T

   Δ Δ Δ   (1.204) 

 

where [Δ]T[Δ] is a 3 by 3 matrix. Usually [Δ]T[Δ] is non-singular and its inverse matrix 

is relatively easy to solve. Then the solution of Eq. (1.204) is Eq. (1.205). 

 

           
1

T T
 



  Δ Δ Δ   (1.205) 

 

Eq. (1.205) is the expression for solving gradient vector of scalar ϕ at CV center point 

P. 

Here we can also summarize the method to calculate inner product between two 

vectors in the transformed curvilinear coordinate system. First find out the expression 

of the first vector with its covariant components. Then find the contravariant 

components of the second vector. Finally, just multiply the components and add them 

up like we did for    PQP P
  s . 

 

9 Boundary conditions 

Only the issues associated with the coordinate transformation are discussed in this 

section, especially the wall treatment for momentum equation. 

 

9.1 Wall treatment for momentum equation, non-slip wall 

The non-slip wall boundary condition defines the wall velocity and wall shear stresses. 

On the CV face of wall, following the instructions of Moukalled et. al.[16], we have 

 

 wall wall wallAF τ   (1.206) 
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where Fwall is the force exert from the wall to the fluid in the CV, τwall is the wall shear 

stress, Awall is the area of the CV face. τwall is calculated by Eq. (1.207). 

 

 

diff diff

wall wall wall

P
d d

 
 

 
        

u u
τ   (1.207) 

 

where diff
u  is the velocity vector parallel to the wall, and is the difference between the 

fluid velocity and the wall velocity. d  is the vertical distance from a point to the wall. 

These two parameters should be calculated at CV center point P. So let’s call them diff

,Pu  

and ,Pd . 

,Pd  is relatively easy to calculate. The calculation should be accomplished in 

coordinate system (ξ, η, ζ). Let R

,Pd  and S

,Pd  be the distances to the rotor and stator, 

respectively. 

 

 
 R R

,P r 0 yP

S S

,P P

d r r r

d r r





   


 

e e
  (1.208) 

 

Let move to diff

,Pu . First of all, calculate the difference between the fluid velocity 

and the wall velocity. 

 

 diff

P P wall u u u   (1.209) 

 

It is notable that in curvilinear coordinate system, the vectors in Eq. (1.209) are 

using different base vectors. The base vectors of uP is defined at point P while uwall uses 

the base vectors defined at the CV face at wall. 

 

 
   

diff

P P wall

x r θ x r θP wall
u v w u v w

 

     

u u u

e e e e e e
  (1.210) 

 

In the current article, the ζ coordinate values for point P and the center point of CF 

face at wall are the same. Then Eq. (1.210) could be simplified as 

 

              

        

diff

P P wall

p x p r p θ wall x wall r wall θwall wall wall wall wall wall

p wall x p wall r p wall θwall wall wall

u v w u v w

u u v v w w

 

     

     

u u u

e e e e e e

e e e

 

 (1.211) 
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And diff

,Pu  can be expressed by 

 

  diff diff diff

,P P P wall wall  u u u n n   (1.212) 

 

For rotor and stator surfaces, nwall can be expressed based on Eq. (1.47). Take rotor 

surface for example. 

 

 
2

,R

wall r θ2 2 2 2 2

, ,wall wall wall

tr

tr

rJ r

J r r r r



 

     
      

           

g
n e e

g
  (1.213) 

 

Thus 

 

 

  

   

   

 

R
diff

P wall wall

R R R

, ,

p wall p wall r θ
2 2 2 2 2 2 2 2

, , , ,
wall wall wall

R
2

,

p wall p wall r2 2 2 2

, ,
wall
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r rr r
v v w w

r r r r r r r r

rrr
v v w w

r r r r

v v

 

   



 



      
           

                

  
          


 

u n n

e e

e

 
R

2

, ,

p wall θ2 2 2 2

, ,
wall

rr r
w w

r r r r

 

 

  
        

e

 

 (1.214) 

 

Similar expressions could be obtained for the stator surface. now insert Eq. (1.214) 

into Eq. (1.212), and ignore superscript R. 
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 (1.215) 

 

Insert Eq. (1.215) into Eq. (1.207) and further insert the result into Eq. (1.206). Then 

we get Fwall. 
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  (1.216) 

 

where 
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  (1.217) 

 

When discretize CVs at wall using Eq. (1.121) and (1.122), the associated am 

parameters and viscous source terms should be calculated by Eq. (1.217). And note that 

 

 tr tr

wall s nA A or A   (1.218) 

 

The non-slip wall boundary condition will make the am parameters to be different 

for each momentum equation. This, as discussed previously, is not desirable. Ferziger 

and Perić[14] pointed out that this situation could be resolved by using deferred 

correction. However there is another possible way. The idea is that find out the common 

shared potion of the am parameters and store them in a safe place (I mean a data structure 

in your computing code). Store the specific portion of am parameters of each momentum 

equation. At the time solving any one of the momentum equations, combine the 

common and specific portion on the fly to obtain the final coefficient matrix for the 

linear solver. 

9.2 Pressure 

Use Eq. (1.219) to calculate the pressure on boundaries. 

 

 
 

qbn P P Pqbn

n
p p p  r   (1.219) 

 

where rPqbn is the vector starting from P and pointing to face q. Note that rPqbn 

should represent a spatial curve like sPQ in Section 8. 
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10 Residual 

The normalized residual is utilized in the current article. For a scalar ϕ, if its discretized 

equation is Eq. (1.122). Then at iteration step n, the normalized residual is 

 

 
 

 
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m m
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P m

P P
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  
 
 
 


  (1.220) 

 

Eq. (1.220) should be evaluated at every CV center P. Let limitRs  be the residual limit. 

A convergence is achieved if 

 

 
   limit

P
all P

max
n

Rs Rs   (1.221) 

 

When all the equations satisfy Eq. (1.221), then the over all calculation is converged. 

 

11 Flowchart 

The solution procedures of the FVM are illustrated by Fig. 7. 

 

 
Fig. 7 Flowchart. 

 



Finite Volume Method with Coordinate Transformation between Two Curvilinear Coordinate Systems 

48 / 49 

12 References 

 

[1] Dietzen, F. J., and Nordmann, R., 1987, "Calculating rotordynamic coefficients of seals by finite-

difference techniques," Journal of Tribology, 109(3), pp. 388-394. 

[2] Nordmann, R., Dietzen, F. J., and Weiser, H. P., 1989, "Calculation of rotordynamic coefficients and 

leakage for annular gas seals by means of finite difference techniques," Journal of tribology, 111(3), pp. 

545-552. 

[3] Hunsaker, D. F., 2011, Evaluation of an incompressible energy-vorticity turbulence model for fully 

rough pipe flow. 

[4] Hung, C.-M., and Kwak, D., 2002, "Definition of Contravariant Velocity Components," No. 

20020079883, NASA Ames Research Center, Moffett Field, CA United States. 

[5] Kwak, D., and Kiris, C. C., 2010, Computation of viscous incompressible flows, Springer Science & 

Business Media. 

[6] Versteeg, H. K., and Malalasekera, W., 2007, An introduction to computational fluid dynamics: the 

finite volume method, Pearson Education. 

[7] Darwish, M. S., and Moukalled, F., 2003, "TVD schemes for unstructured grids," International Journal 

of Heat and Mass Transfer, 46, pp. 599-611. 

[8] B, V. L., 1974, "Towards the ultimate conservative difference scheme. II. Monotonicity and 

conservation combined in a second-order scheme," Journal of computational physics, 14(4), pp. 361-

370. 

[9] D., V. A. G., B., V. L., and W., R. J. W., 1982, "A comparative study of computational methods in cosmic 

gas dynamics," Astronomy and Astrophysics, 108, pp. 76-84. 

[10] L, R. P., 1985, "Some contributions to the modelling of discontinuous flows," Large-scale 

computations in fluid mechanics, 1, pp. 163-193. 

[11] Sweby, P. K., 1984, "High resolution schemes using flux limiters for hyperbolic conservation laws," 

SIAM journal on numerical analysis, 21(5), pp. 995-1011. 

[12] Lien, F.-S., and Leschziner, M. A., 1994, "Upstream monotonic interpolation for scalar transport with 

application to complex turbulent flows," International Journal for Numerical Methods in Fluids, 19(6), 

pp. 527-548. 

[13] Hong, C.-P., 2004, Computer modelling of heat and fluid flow in materials processing, CRC Press. 

[14] Ferziger, J. H., and Perić, M., 2002, Computational Methods for Fluid Dynamics, Springer, Berlin. 

[15] "ANSYS FLUENT, Theory Guide, Solver Theory, Pressure-Based Solver, Pressure Interpolation 

Schemes." 

[16] Moukalled, F., Mangani, L., and Darwish, M., 2016, The Finite Volume Method in Computational 

Fluid Dynamics. An Advanced Introduction with OpenFOAM® and Matlab®, Springer International 

Publishing Switzerland. 

[17] Kobayashi, M. H., and Pereira, J. C. F., 1991, "Culation of incompressible laminar flows on a 

nonstaggered, nonorthogonal grid," Numerical Heat Transfer, Part B Fundamentals, 19(2), pp. 243-262. 

[18] Choi, S. K., Y Nam, H., Lee, Y. B., and Cho, 1993, "An efficient three-dimensional calculation 

procedure for incompressible flows in complex geometries," Numerical Heat Transfer, 23(4), pp. 387-

400. 

[19] Choi, S. K., Nam, H. Y., and Cho, M., 1993, "Use of the momentum interpolation method for 

numerical solution of incompressible flows in complex geometries: choosing cell face velocities," 



Finite Volume Method with Coordinate Transformation between Two Curvilinear Coordinate Systems 

49 / 49 

Numerical Heat Transfer, 23(1), pp. 21-41. 

[20] Choi, S. K., Nam, H. Y., and Cho, M., 1992, "The choice of cell face velocities in the three dimensional 

incompressible flow calculations on nonorthogonal grids," KSME Journal, 6(2), pp. 154-161. 

[21] Rhie, C. M., and Chow, W. L., 1983, "Numerical study of the turbulent flow past an airfoil with 

trailing edge separation," AIAA journal, 21(11), pp. 1525-1532. 

[22] Yakinthos, K., Ballas, M., Tamamidis, P., and Goulas, A., 1996, "Numerical Simulation of Three-

Dimensional Complex Flows Using a Pressure-Based Non-Staggered Grid Method," Computation of 

Three-Dimensional Complex Flows, Springer, pp. 372-378. 

[23] Qu, Z. G., Tao, W. Q., and He, Y. L., 2007, "An improved numerical scheme for the simpler method 

on nonorthogonal curvilinear coordinates: SIMPLERM," Numerical Heat Transfer, Part B: Fundamentals, 

51(1), pp. 43-66. 

 


	Finite Volume Method with Coordinate Transformation between Two Curvilinear Coordinate Systems
	1 Introduction
	2 Vector and Coordinate Transformation
	2.1 Coordinate transformation and partial derivatives
	2.2 The unit base vectors in cylindrical coordinate system
	2.3 Transformation of vector

	3 The grid
	4 Governing equations
	5 Schemes for the momentum equations
	5.1 The integral form of the governing equation
	5.2 Convection and diffusion terms
	5.3 Source terms
	5.3.1 Pressure gradient source term
	5.3.2 Viscous source terms
	5.3.3 Special source terms

	5.4 The general form of the momentum equations

	6 The pressure-velocity coupling in co-located grid considering coordinate transformation
	6.1 Momentum interpolation
	6.2 Pressure correction equation
	6.2.1 The net mass flux and its correction
	6.2.2 Pressure correction equation


	7 Other scalars
	8 Gradient reconstruction
	9 Boundary conditions
	9.1 Wall treatment for momentum equation, non-slip wall
	9.2 Pressure

	10 Residual
	11 Flowchart
	12 References

