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1 Introduction 

A LIDAR detector is used in a new kind of robot aiming at in-pipe inspection as the 

safeguard component. The LIDAR will constantly make measurement while the robot 

is operating. As for safeguarding purpose, there should be a code which could tell 

whether the robot is inside the pipe or not, based on the range data obtained by the 

LIDAR. 

For the robot here in question, a specific LIDAR, the RPLIDAR, will be used as 

the safeguard. This piece of code is designed to analyze the range data measured by an 

RPLIDAR to determine the in/out pipe condition. 

The RPLIDAR will be installed on the back of the robot with no obstacles in all 

the detectable zone. This is shown in Fig. 1. Some assumptions are made to the 

scenarios: 

 

(1) The perfect pipe has a cylinder or tube shape. The cross-section of the pipe is a 

circle. 

(2) The RPLIDAR is installed perfectly perpendicular to the pipe wall. 

 

 

Fig. 1 Installation of the RPLIDAR. 

 

The code is designed to figure out the most possible radius based on the 

assumption that the cross-section is a circle. Then the user could compare the analyzed 

radius with the actual average radius of the actual pipe. A standard deviation will be 

also obtained by the analysis. The user could determine whether the robot is inside a 

pipe or not based on the absolute differences between the analyzed radius and the actual 

average radius, considering the calculated deviation. To deal with some special cases, 

like the launch positioning, there is a mask mechanism to facilitate the radius analysis. 

The user could specify some angle regions that should be deliberately ignored when 

performing the analysis. This code is now shipped with two methods to analyze the 

radius, one based on simple statistical process and the other one adopts a regression 

model. Test cases will be given to compare both accuracy and performance. 
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The code is developed in C++ since the target system runs C++ developed 

software to control the robot. The target operating system is assumed to be Ubuntu 

16.04 or above. Some third-party packages are needed. The third-party packages are 

the Boost library and the Eigen package. They are both freely available and extremely 

easy to deploy. 

This project will be called “LidarSafeGuard” from now on. 

This user manual will discuss the underlying method of the radius analysis 

together with sample codes and test cases. 

 

2 Get the source code 

The LidarSafeGuard project is now hosted on Github. The user could get access 

to the code by visiting: 

https://github.com/huyaoyu/LidarSafeGuard 

 

3 Compiling and linking 

First of all, for any C++ project, it is possible that the user will experience a painful 

process to get everything properly compiled and linked. To compile and link against 

LidarSafeGuard, one need Boost and Eigen.  

Boost is shipped with Ubuntu operating system and that version suffices. Eigen 

could be obtained from its official website. Eigen is extremely easy to work with since 

it only contains C++ header files, no additional linking effort will be needed. So after 

the user deployed Eigen system-widely (unzip the achieve file and make a symbolic 

link to /usr/local/includes, maybe), the compiling recipe of LidarSafeGuard needs no 

additional options. To summarize, if the user is going to only compile and link 

LidarSafeGuard, we need no additional modifications to the compiling and linking 

commands. 

However, if the user would like to compile the test cases provided together with 

the project, she/he may need to specify –lboost_chrono and –lboost_system in their 

linking command. 

 

4 Namespace 

A namespace called RP is defined by LidarSafeGuard. And the double type is wrapped 

by the RP::real type in case the user would like to use float type to represent floating 

point values. All the classes are defined under the namespace RP. 
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5 Local frame and LidarMask 

By default, the RPLIDAR returns a round of range measurements covering 2 π of angle 

range in the anti-clockwise direction, in the local frame (coordinate system) attached to 

its center. The local frame is illustrated in Fig. 2. The x’-axis is along the cable hole of 

the outer shell and the y’-axis is vertical to it obeying the right-hand rule. The data 

returned by RPLIDAR always start from angle position near –π all the way to π. 

 

 

Fig. 2 The local frame of RPLIDAR. 

 

Fig. 3 The local frame and global frame. 

 

The user should figure out how the RPLIDAR is installed in reality, especially the 

relative phase angle, β, between the x’-axis of the local frame and the x-axis of the 

global frame defined with respect to the pipe, as illustrated in Fig. 3. Knowing the 

relative phase angle is important since the user may want to deliberately ignore some 

range of angles when trying to analyze the radius. The reason for ignoring angle range 

is that for some special case the robot may operate in a pipe segment which has only a 

portion of a full circle as its cross-section, e.g. the launch rig. Only the lower half of a 

circle may be detected when the robot is sitting on the launch rig. If the user needs 

LidarSafeGuard to give a good prediction of the radius, the upper half must be ignored 

in the analysis. When it is the case the user would like to work on, the LidarMask class 

will come into play. 

The user uses the LidarMask to define a mask of angle positions that will be 
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ignored in the future analysis process. A LidarMask object could contain several angle 

segments described by the AngleSegment_t struct. The user specifies an angle segment 

in an AngleSegment_t struct variable, then this variable can be added or registered to a 

LidarMask object. The user could add multiple AngleSegment_t structs to LidarMask 

object as long as the structs represent proper angle ranges. For “proper”, it means no 

cross-covered angle ranges and all the structs are added in an angle-increasing manner. 

List. 1 shows a sample code for creating a LidarMask object and populates it with two 

AngleSegment_t structs. 

 

List. 1 LidarMask. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

RP::LidarMask LM(-MY_PI, MY_PI); 

RP::LidarMask::AngleSegment_t AS; 

AS.angle0 = -MY_PI; 

AS.angle1 = -MY_PI / 2.0; 

LM.copy_push_segment(AS); 

 

AS.angle0 = MY_PI / 2.0; 

AS.angle1 = MY_PI; 

LM.copy_push_segment(AS); 

 

The maximum and minimum allowed angles should be specified when the user 

creates a LidarMask object LM (Line 1). Here LidarSafeGuard defined a macro, 

MY_PI, to represent the value of π. An AngleSegment_t struct variable AS is created at 

Line 2. The user fills AS with lower and upper angles (Line 3, 4). Then AS is added 

into LM at Line 5. At Line 7 and 8, AS is reused to describe a new angle segment. Then 

AS is used again to register a new angle segment into LM (Line 9). Now, LM has two 

angle segments registered. LM could be used in the later process of radius analysis. Fig. 

4 shows the masked range of List. 1. 

 

 

Fig. 4 Masked range of List. 1. 

 

LidarMask will produce a raw C++ array of integers to represent the mask. In that 

array, 1 means mask 0 means not mask. The array has the same length of the length of 
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the data array returned from the RPLIDAR. If the length of the data array of RPLIDAR 

changes dynamically, the length of the mask array will change accordingly and 

automatically.  

The user could always choose not to use a LidarMask or even to use a LidarMask 

with no AngleSegment_t struct registered. The radius analysis will work in these two 

cases. However, if an empty LidarMask (LidarMask object with on AngleSegment_t 

struct registered) is used, a mask array will still be generated with all possible angle 

positions marked as “do not mask”. This will cause a little waste of system computing 

resource. But it could be ignored since the performance overhead is negligible in reality. 

 

6 Class LidarSafeGuard 

LidarSafeGuard has a class called LidarSafeGuard. It sounds a little bit confusing, 

though. Class LidarSafeGuard is a base class which provides the basic functionalities 

of all safeguards. The user could perform the following operations with 

LidarSafeGuard’s member functions. 

 

(1) Set and get the name of a LidarSafeGuard object. 

(2) Set and get the LidarMask object referenced by a LidarSafeGuard object. 

(3) Check the safety status of the robot. 

(4) Examine the ratio of masked regions specified by the referenced LidarMask object. 

(5) Examine the ratio of Infs in the supplied data measured by the RPLIDAR. 

(6) Copy the raw data resulting from the RPLIDAR. 

 

The most important function of the above is the copy_data() function which copies 

data from the raw data of RPLIDAR measurement. The user is encouraged to read the 

source code of LidarSafeGuard.hpp to inspect the argument specifications of 

copy_data(). 

The most effective way to show how the LidarSafeGuard class works is reading 

the test case codes. However, each class derived from LidarSafeGuard will use the 

member functions of LidarSafeGuard to perform common operations. So we can just 

refer to the sample codes for the derived classes or the test cases to investigate the usage 

of class LidarSafeGuard. 

 

7 Class InCylinderSafeGuard 

Class InCylinderSafeGuard provides the simplest method to analyze the radius of the 

cylinder (pipe). The method is to use the average value calculated from the range data 

returned from the RPLIDAR.  
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For InCylinderSafeGuard to work properly, the user has to provide a reasonably 

accurate approximation of the eccentricity, ecc, between the center of the RPLIDAR 

and the center of the pipe. There are two more parameters needs to be specified, as 

shown in Fig. 3, the angle α and β. An InCylinderSafeGuard object will use the above 

three parameters to translate all the ranges points back to the global frame defined with 

respect to the pipe. 

A standard procedure of using InCylinderSafeGuard may look like the following: 

(1) Create a new InCylinderSafeGuard object icsg with a specified name, 

eccentricity, and phase angles (α and β). 

(2) Set a reference to a LidarMask object by set_mask() if a mask is needed. 

(3) Copy the raw data of the RPLIDAR by copy_data(). 

(4) Get information of the raw data and the mask by infRatio = get_inf_ratio() and 

maskRatio = get_mask_ratio().  

(5) Analysis the radius with verify() and obtain a LidarSafeGuard::SafetyFalg_t 

typed value, flag. 

(6) Retrieve analyzed radius and the associated standard deviation by radiusMean 

= get_radius_mean() and radiusStd = get_radius_std(). 

(7) Determine the actual safety status from the above five values: flag, infRatio, 

maskRatio, radiusMean, and radiusStd. 

 

A practical strategy is that it should be safe if: flag == 

LidarSafeGuard::FLAG_SAFE, infRatio < some kind of limit with user-specified 

maskRatio < some kind of limit. 

 

Here infRatio is calculated by Eq. (1). 

 

 
infs  in the unmasked positions

all unmasked positions
infRatio    (1) 

 

and maskRatio is calculated by Eq. (2). 

 

 
masked positions

all possible positions
maskRatio    (2) 

 

So for the above mentioned practical strategy, the user has to specify a reasonable 

limit for infRatio considering the actual maskRatio. That is to say, infRatio should be 

lower than a certain limit with this limit defined by a known maskRatio. 

The verify() function analyzes the radius by a simple averaging process. 

Considering a non-zero eccentricity of the center of the RPLIDAR, the averaging 

process is described in Fig. 5. Initially, the range data is measured in the local frame 

x’O’y’, as illustrated in (1) of Fig. 5. The InCylinderSafeGuard object first converts the 

range data from the “angle-range” pairs to the “x’ and y’ coordinates” pairs. Then all 
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the coordinates (xi’, yi’) are transferred from x’O’y’ to xOy, the global frame, as shown 

in (2) of Fig. 5 and Eq. (3). Finally, the radius (amplitude) of every point, ri, is evaluated 

and the mean radius and the standard deviation are calculated using all ri values, as 

described in (3) of Fig. 5. 

 

 

Fig. 5 The averaging procedures. 
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After the radius is analyzed, the user could compare it with the real radius of the 

cylinder and take the standard deviation into consideration. This process in fast. 

However, the accuracy is heavily based on the eccentricity, α, and β. It is encouraged 

that the end user makes some additional tests on real cases and to investigate the 

reasonable limits for (1) the difference between the analyzed radius and the real radius 

and (2) the standard deviation. The verify() function takes these two limits as the input 

argument in order to give back a flag of safety. 

The user could further examine the test cases shipped with LidarSafeGuard to see 

the overall performance. 

 

8 Class InCylRgrSafeGuard 

To eliminate the dependence on the input of the eccentricity and the phase angles of 

class InCylinderSafeGuard, LidarSafeGuard provides another class. This is the 

InCylRgrSafeGuard. 

When working with InCylRgrSafeGuard, the user no longer need to specify the 

eccentricity and the phase angles. InCylRgrSafeGuard could figure out the radius and 

the center coordinate with respect to the local frame by a regression method. The radius 

is analyzed in a best-fit sense by an optimization procedure in a least-squares manner. 

The underlying mathematics will be discussed as follows. It should be mentioned that 

this method is inspired by the work of Gander, et al.[1] 
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In a 2D Cartesian coordinate system, xOy, a circle could be represented by Eq. (4). 

 

    
2 2 2

c cx x y y r      (4) 

 

where xc and yc are the center coordinates and r is the radius. Let’s re-write Eq. (4) in 

Eq. (5). 

 

      
2 2 2

c c,g x y x x y y r       (5) 

For a circle g(x, y) = 0. 

Now we have a set of range data, (xi, yi), i = 1, … N, that comes from the RPLIDAR. 

Suppose we would like to find a circle with specific radius, r0, and center coordinate 

(x0, y0) such that this circle best fits into (xi, yi). In other words, this is equivalent to 

solve the optimization problem listed as Eq. (6). 
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For F, the minimum possible value is 0 and it means all (xi, yi) points are located 

exactly on a circle. The Eq. (6) turns to a new problem that how close we could get F 

to 0. Let’s start with an initial guess of 
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  (7) 

 

Where we presume that x0, y0, and r0 will make F = 0. Now, we should take F as to be 

a function of x0, y0, and r0. Then we could approximate 0 = F(x0, y0, r0) at point (xt, yt, 

rt) with a first order Taylor series, Eq. (8). 
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We can force  
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Eq. (9) is satisfied by all the (xi, yi) points. Because fi >= 0, so F = 0 means fi = 0. Then 

Eq. (9) could be written in a matrix form 
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From Eq. (10) we can solve the linear equation set 

 

      A h F   (14) 

 

Since point (xt, yt, rt) is only a guess and Eq (8) is just a first-order approximation 

of Eq. (6), so Eq. (7) may not necessarily satisfy Eq. (6). But we could take the updated 

Eq. (7) as a closer guess of the real (x0, y0, r0). All this means that we could refine our 

guess of the real (x0, y0, r0) by using Eq. (14) and Eq. (7) iteratively. Hopefully, the 

iterative process will converge to an (x0, y0, r0) which is close enough to the real (x0, y0, 

r0). To detect a convergence, a residual is defined as 
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     1
norm

n n



 h h   (15) 

 

where n is the current number of iteration and norm() is the L-2 norm. A convergence 

could be achieved with sufficiently small ε. 

The above procedure includes solving the over-determined linear equation set, 

Eq. (14). This equation is also solved by the least-squares method. In the code of 

InCylRgrSafeGurad, it is achieved thanks to Eigen. In the actual code of 

InCylRgrSafeGuard, the above iterative process is controlled by a maximum residual 

limit and a maximum number of iterations. The user could specify these two parameters 

by set_max_residual() and set_max_iters() functions. To further enhance the stability 

of the iteration, a relaxation factor, λ, could be set to alter Eq. (7) into Eq. (16). 
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  (16) 

 

where λ should be a positive number. If the user chooses a λ to be 0 < λ < 1, then the 

under-relaxation effect could be achieved. Otherwise, if λ > 1, we will have an over-

relaxation effect. The under-relaxation is preferable than the other one. The user could 

set λ by set_relax() function.  

The user should set the maximum residual, maximum number of iterations, and 

the relaxation factor carefully. The goal is to achieve a satisfactory solution of (x0, y0, 

r0) as fast as possible, with small number of iterations and acceptable ε value. If the user 

chooses not to set those three parameters, InCylRgrSafeGuard will use a set of default 

values. The default values are 1e-4 maximum residual, 20 iterations and 0.5 relaxation 

factor. 

In the code of InCylRgrSafeGuard the standard deviation is evaluated after the 

radius is analyzed. 

The usage of InCylRgrSafeGuard is best illustrated by the test cases. 

 

9 Test cases 

In the current source code of LidarSafeGuard project, there is a main.cpp file which 

now serves as the file contains all the test cases. The test cases are designed to cover as 

many aspects of LidarSafeGuard as possible. 

 

No. Test case Description 

1 test_naive_situation() Perfect circle, mask.  

InCylinderSafeGuard. 

2 test_perfect_circle_with_noise() Perfect circle, noise, no mask. 
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InCylinderSafeGuard. 

3 test_data_on_launchrig_no_mask() Real launch rig, no mask.  

InCylinderSafeGuard. 

4 test_data_on_launchrig_mask() Real launch rig, mask.  

InCylinderSafeGuard. 

5 test_data_on_launchrig_mask_regression() Real launch rig, mask.  

InCylRgrSafeGuard. 

 

The test cases are run on a system of Ubuntu 17.04 64bit, which is hosted on a 

Windows 10 64bit PC. The hosting software is Oracle VirtualBox. The hardware 

includes an Intel Core i5-2400 CPU at 3.10 GHz. The time consumed by the verify() 

function in each case is measured by routines provided by the Boost library. 

The input data of all the test cases are a bunch of CSV files (if an input file is 

needed). These input data are shipped with the LidarSafeGuard project. 

9.1 test_naive_situation() 

This test case sets up an extreme case with a perfect circle as the cylinder wall. The 

radius is 1 m. The RPLIDAR is located at ε = 0.9 m in the global frame, with α = 0 and 

β = 0. A mask with two angle segments is set up and registered to an 

InCylinderSafeGuard object. The input data is synthetic and is created on the fly. There 

is no Inf in the input data. InCylinderSafeGuard should give very good analyzed results 

on the radius and standard deviation. And it does. 

9.2 test_perfect_circle_with_noise() 

This test case use ε = 0.9 m, α = 0, and β = 0. The radius is 1 m. A random noise with 

peak-to-peak fluctuation about 0.1 m is imposed on the perfect circle. No mask is 

applied this time. The input data is shown in Fig. 6. An InCylinderSafeGuard is used to 

do the analysis.  

 

Fig. 6 A circle with noise as the cylinder wall. 
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9.3 test_data_on_launchrig_no_mask() 

In this test, a real robot is put on a real launch rig with an actual RPLIDAR installed. 

The robot sits on the rig with no movements. The RPLIDAR is installed with ε ≈ 0 m, 

α ≈ 0, and β ≈ 0. The actual radius of the launch rig is about 0.521 m. 

The range data is recorded by using the bag file functionality provided by the ROS. 

Then the raw data is extracted from the recorded bag file. Only one frame of data is 

used. There are about 360 data points in the frame of data. As shown in Fig. 7, because 

of the geometry of the launch rig, there are about half the data points are Infs. However, 

the other half of the data points are quite good. For the real configuration, the RPLIDAR 

has its tailing cable pointing to the launch rig. So the x-axis in Fig. 7 is pointing 

downwards in the real world. 

 

 
Fig. 7 Actual data from the RPLIDAR on the launch rig. 

 

An InCylinderSafeGuard object with no mask is used. Since there is no mask to 

facilitate the analysis, InCylinderSafeGuard should give an unsafe flag, a wrong radius 

prediction, and a large standard deviation. Meanwhile, the infRatio is as high as 0.5. It 

is another sign of unsafe status. 
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9.4 test_data_on_launchrig_mask() 

It is basically the same with test case test_data_on_launchrig_no_mask() with the 

exception that a proper mask is applied. In the real test, the space over the robot is open 

and the obstacles are all far away from the RPLIDAR, resulting lots of Inf values in 

these angle regions. A mask is placed on these regions. An InCylinderSafeGuard object 

is adopted. This time, the radius prediction is good with acceptable standard deviation. 

The infRatio should be very low since all the data points targeting the launch rig are in 

quite a good condition. 

 

9.5 test_data_on_launchrig_mask_regression() 

All the configurations are the same except that an InCylRgrSafeGuard object is used 

this time. This object successfully predicts the radius with good standard deviation. 

However, the time consumed by InCylRgrSafeGuard is about a magnitude higher than 

that of an InCylinderSafeGuard object. But the actual time length is about 3 ms on the 

test PC. So it may be acceptable on the real robot. 
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