

User manual of LidarSafeGuard

Yaoyu Hu

huyaoyu@sjtu.edu.cn

2017-12-18

mailto:huyaoyu@sjtu.edu.cn

User manual of LidarSafeGuard

i

Table of contents

1 Introduction ... 1

2 Get the source code ... 2

3 Compiling and linking .. 2

4 Namespace .. 2

5 Local frame and LidarMask .. 3

6 Class LidarSafeGuard ... 5

7 Class InCylinderSafeGuard .. 5

8 Class InCylRgrSafeGuard ... 7

9 Test cases .. 10

9.1 test_naive_situation() ... 11

9.2 test_perfect_circle_with_noise() .. 11

9.3 test_data_on_launchrig_no_mask() .. 12

9.4 test_data_on_launchrig_mask() .. 13

9.5 test_data_on_launchrig_mask_regression() ... 13

10 Acknowledgement ... 13

11 References ... 13

User manual of LidarSafeGuard

1/13

1 Introduction

A LIDAR detector is used in a new kind of robot aiming at in-pipe inspection as the

safeguard component. The LIDAR will constantly make measurement while the robot

is operating. As for safeguarding purpose, there should be a code which could tell

whether the robot is inside the pipe or not, based on the range data obtained by the

LIDAR.

For the robot here in question, a specific LIDAR, the RPLIDAR, will be used as

the safeguard. This piece of code is designed to analyze the range data measured by an

RPLIDAR to determine the in/out pipe condition.

The RPLIDAR will be installed on the back of the robot with no obstacles in all

the detectable zone. This is shown in Fig. 1. Some assumptions are made to the

scenarios:

(1) The perfect pipe has a cylinder or tube shape. The cross-section of the pipe is a

circle.

(2) The RPLIDAR is installed perfectly perpendicular to the pipe wall.

Fig. 1 Installation of the RPLIDAR.

The code is designed to figure out the most possible radius based on the

assumption that the cross-section is a circle. Then the user could compare the analyzed

radius with the actual average radius of the actual pipe. A standard deviation will be

also obtained by the analysis. The user could determine whether the robot is inside a

pipe or not based on the absolute differences between the analyzed radius and the actual

average radius, considering the calculated deviation. To deal with some special cases,

like the launch positioning, there is a mask mechanism to facilitate the radius analysis.

The user could specify some angle regions that should be deliberately ignored when

performing the analysis. This code is now shipped with two methods to analyze the

radius, one based on simple statistical process and the other one adopts a regression

model. Test cases will be given to compare both accuracy and performance.

User manual of LidarSafeGuard

2/13

The code is developed in C++ since the target system runs C++ developed

software to control the robot. The target operating system is assumed to be Ubuntu

16.04 or above. Some third-party packages are needed. The third-party packages are

the Boost library and the Eigen package. They are both freely available and extremely

easy to deploy.

This project will be called “LidarSafeGuard” from now on.

This user manual will discuss the underlying method of the radius analysis

together with sample codes and test cases.

2 Get the source code

The LidarSafeGuard project is now hosted on Github. The user could get access

to the code by visiting:

https://github.com/huyaoyu/LidarSafeGuard

3 Compiling and linking

First of all, for any C++ project, it is possible that the user will experience a painful

process to get everything properly compiled and linked. To compile and link against

LidarSafeGuard, one need Boost and Eigen.

Boost is shipped with Ubuntu operating system and that version suffices. Eigen

could be obtained from its official website. Eigen is extremely easy to work with since

it only contains C++ header files, no additional linking effort will be needed. So after

the user deployed Eigen system-widely (unzip the achieve file and make a symbolic

link to /usr/local/includes, maybe), the compiling recipe of LidarSafeGuard needs no

additional options. To summarize, if the user is going to only compile and link

LidarSafeGuard, we need no additional modifications to the compiling and linking

commands.

However, if the user would like to compile the test cases provided together with

the project, she/he may need to specify –lboost_chrono and –lboost_system in their

linking command.

4 Namespace

A namespace called RP is defined by LidarSafeGuard. And the double type is wrapped

by the RP::real type in case the user would like to use float type to represent floating

point values. All the classes are defined under the namespace RP.

User manual of LidarSafeGuard

3/13

5 Local frame and LidarMask

By default, the RPLIDAR returns a round of range measurements covering 2 π of angle

range in the anti-clockwise direction, in the local frame (coordinate system) attached to

its center. The local frame is illustrated in Fig. 2. The x’-axis is along the cable hole of

the outer shell and the y’-axis is vertical to it obeying the right-hand rule. The data

returned by RPLIDAR always start from angle position near –π all the way to π.

Fig. 2 The local frame of RPLIDAR.

Fig. 3 The local frame and global frame.

The user should figure out how the RPLIDAR is installed in reality, especially the

relative phase angle, β, between the x’-axis of the local frame and the x-axis of the

global frame defined with respect to the pipe, as illustrated in Fig. 3. Knowing the

relative phase angle is important since the user may want to deliberately ignore some

range of angles when trying to analyze the radius. The reason for ignoring angle range

is that for some special case the robot may operate in a pipe segment which has only a

portion of a full circle as its cross-section, e.g. the launch rig. Only the lower half of a

circle may be detected when the robot is sitting on the launch rig. If the user needs

LidarSafeGuard to give a good prediction of the radius, the upper half must be ignored

in the analysis. When it is the case the user would like to work on, the LidarMask class

will come into play.

The user uses the LidarMask to define a mask of angle positions that will be

User manual of LidarSafeGuard

4/13

ignored in the future analysis process. A LidarMask object could contain several angle

segments described by the AngleSegment_t struct. The user specifies an angle segment

in an AngleSegment_t struct variable, then this variable can be added or registered to a

LidarMask object. The user could add multiple AngleSegment_t structs to LidarMask

object as long as the structs represent proper angle ranges. For “proper”, it means no

cross-covered angle ranges and all the structs are added in an angle-increasing manner.

List. 1 shows a sample code for creating a LidarMask object and populates it with two

AngleSegment_t structs.

List. 1 LidarMask.

1

2

3

4

5

6

7

8

9

RP::LidarMask LM(-MY_PI, MY_PI);

RP::LidarMask::AngleSegment_t AS;

AS.angle0 = -MY_PI;

AS.angle1 = -MY_PI / 2.0;

LM.copy_push_segment(AS);

AS.angle0 = MY_PI / 2.0;

AS.angle1 = MY_PI;

LM.copy_push_segment(AS);

The maximum and minimum allowed angles should be specified when the user

creates a LidarMask object LM (Line 1). Here LidarSafeGuard defined a macro,

MY_PI, to represent the value of π. An AngleSegment_t struct variable AS is created at

Line 2. The user fills AS with lower and upper angles (Line 3, 4). Then AS is added

into LM at Line 5. At Line 7 and 8, AS is reused to describe a new angle segment. Then

AS is used again to register a new angle segment into LM (Line 9). Now, LM has two

angle segments registered. LM could be used in the later process of radius analysis. Fig.

4 shows the masked range of List. 1.

Fig. 4 Masked range of List. 1.

LidarMask will produce a raw C++ array of integers to represent the mask. In that

array, 1 means mask 0 means not mask. The array has the same length of the length of

User manual of LidarSafeGuard

5/13

the data array returned from the RPLIDAR. If the length of the data array of RPLIDAR

changes dynamically, the length of the mask array will change accordingly and

automatically.

The user could always choose not to use a LidarMask or even to use a LidarMask

with no AngleSegment_t struct registered. The radius analysis will work in these two

cases. However, if an empty LidarMask (LidarMask object with on AngleSegment_t

struct registered) is used, a mask array will still be generated with all possible angle

positions marked as “do not mask”. This will cause a little waste of system computing

resource. But it could be ignored since the performance overhead is negligible in reality.

6 Class LidarSafeGuard

LidarSafeGuard has a class called LidarSafeGuard. It sounds a little bit confusing,

though. Class LidarSafeGuard is a base class which provides the basic functionalities

of all safeguards. The user could perform the following operations with

LidarSafeGuard’s member functions.

(1) Set and get the name of a LidarSafeGuard object.

(2) Set and get the LidarMask object referenced by a LidarSafeGuard object.

(3) Check the safety status of the robot.

(4) Examine the ratio of masked regions specified by the referenced LidarMask object.

(5) Examine the ratio of Infs in the supplied data measured by the RPLIDAR.

(6) Copy the raw data resulting from the RPLIDAR.

The most important function of the above is the copy_data() function which copies

data from the raw data of RPLIDAR measurement. The user is encouraged to read the

source code of LidarSafeGuard.hpp to inspect the argument specifications of

copy_data().

The most effective way to show how the LidarSafeGuard class works is reading

the test case codes. However, each class derived from LidarSafeGuard will use the

member functions of LidarSafeGuard to perform common operations. So we can just

refer to the sample codes for the derived classes or the test cases to investigate the usage

of class LidarSafeGuard.

7 Class InCylinderSafeGuard

Class InCylinderSafeGuard provides the simplest method to analyze the radius of the

cylinder (pipe). The method is to use the average value calculated from the range data

returned from the RPLIDAR.

User manual of LidarSafeGuard

6/13

For InCylinderSafeGuard to work properly, the user has to provide a reasonably

accurate approximation of the eccentricity, ecc, between the center of the RPLIDAR

and the center of the pipe. There are two more parameters needs to be specified, as

shown in Fig. 3, the angle α and β. An InCylinderSafeGuard object will use the above

three parameters to translate all the ranges points back to the global frame defined with

respect to the pipe.

A standard procedure of using InCylinderSafeGuard may look like the following:

(1) Create a new InCylinderSafeGuard object icsg with a specified name,

eccentricity, and phase angles (α and β).

(2) Set a reference to a LidarMask object by set_mask() if a mask is needed.

(3) Copy the raw data of the RPLIDAR by copy_data().

(4) Get information of the raw data and the mask by infRatio = get_inf_ratio() and

maskRatio = get_mask_ratio().

(5) Analysis the radius with verify() and obtain a LidarSafeGuard::SafetyFalg_t

typed value, flag.

(6) Retrieve analyzed radius and the associated standard deviation by radiusMean

= get_radius_mean() and radiusStd = get_radius_std().

(7) Determine the actual safety status from the above five values: flag, infRatio,

maskRatio, radiusMean, and radiusStd.

A practical strategy is that it should be safe if: flag ==

LidarSafeGuard::FLAG_SAFE, infRatio < some kind of limit with user-specified

maskRatio < some kind of limit.

Here infRatio is calculated by Eq. (1).

infs in the unmasked positions

all unmasked positions
infRatio  (1)

and maskRatio is calculated by Eq. (2).

masked positions

all possible positions
maskRatio  (2)

So for the above mentioned practical strategy, the user has to specify a reasonable

limit for infRatio considering the actual maskRatio. That is to say, infRatio should be

lower than a certain limit with this limit defined by a known maskRatio.

The verify() function analyzes the radius by a simple averaging process.

Considering a non-zero eccentricity of the center of the RPLIDAR, the averaging

process is described in Fig. 5. Initially, the range data is measured in the local frame

x’O’y’, as illustrated in (1) of Fig. 5. The InCylinderSafeGuard object first converts the

range data from the “angle-range” pairs to the “x’ and y’ coordinates” pairs. Then all

User manual of LidarSafeGuard

7/13

the coordinates (xi’, yi’) are transferred from x’O’y’ to xOy, the global frame, as shown

in (2) of Fig. 5 and Eq. (3). Finally, the radius (amplitude) of every point, ri, is evaluated

and the mean radius and the standard deviation are calculated using all ri values, as

described in (3) of Fig. 5.

Fig. 5 The averaging procedures.

   

   

 

 

cos sin cos

sin cos sin

x x
ecc

y y

  

  

        
       

        
 (3)

After the radius is analyzed, the user could compare it with the real radius of the

cylinder and take the standard deviation into consideration. This process in fast.

However, the accuracy is heavily based on the eccentricity, α, and β. It is encouraged

that the end user makes some additional tests on real cases and to investigate the

reasonable limits for (1) the difference between the analyzed radius and the real radius

and (2) the standard deviation. The verify() function takes these two limits as the input

argument in order to give back a flag of safety.

The user could further examine the test cases shipped with LidarSafeGuard to see

the overall performance.

8 Class InCylRgrSafeGuard

To eliminate the dependence on the input of the eccentricity and the phase angles of

class InCylinderSafeGuard, LidarSafeGuard provides another class. This is the

InCylRgrSafeGuard.

When working with InCylRgrSafeGuard, the user no longer need to specify the

eccentricity and the phase angles. InCylRgrSafeGuard could figure out the radius and

the center coordinate with respect to the local frame by a regression method. The radius

is analyzed in a best-fit sense by an optimization procedure in a least-squares manner.

The underlying mathematics will be discussed as follows. It should be mentioned that

this method is inspired by the work of Gander, et al.[1]

User manual of LidarSafeGuard

8/13

In a 2D Cartesian coordinate system, xOy, a circle could be represented by Eq. (4).

    
2 2 2

c cx x y y r    (4)

where xc and yc are the center coordinates and r is the radius. Let’s re-write Eq. (4) in

Eq. (5).

      
2 2 2

c c,g x y x x y y r     (5)

For a circle g(x, y) = 0.

Now we have a set of range data, (xi, yi), i = 1, … N, that comes from the RPLIDAR.

Suppose we would like to find a circle with specific radius, r0, and center coordinate

(x0, y0) such that this circle best fits into (xi, yi). In other words, this is equivalent to

solve the optimization problem listed as Eq. (6).

    

c 0 c 0 0

22

1

Find , , and to give

min , ,
N

i i i i i

i

x x y y r r

F f f g g x y


  

 
   

 


 (6)

For F, the minimum possible value is 0 and it means all (xi, yi) points are located

exactly on a circle. The Eq. (6) turns to a new problem that how close we could get F

to 0. Let’s start with an initial guess of

0 t

0 t

0 t

x

y

r

x x h

y y h

r r h

 

 

 

 (7)

Where we presume that x0, y0, and r0 will make F = 0. Now, we should take F as to be

a function of x0, y0, and r0. Then we could approximate 0 = F(x0, y0, r0) at point (xt, yt,

rt) with a first order Taylor series, Eq. (8).

 

          

 

0 0 0

t t t t t t t t t

c c ct t t

t t t

c c ct t t

, ,

, ,

, ,

x y r

x y r

F x y r

F F F
F x y r x h x x h x x h x

x y r

F F F
F x y r h h h

x y r

  
         

  

  
   

  

 (8)

We can force

User manual of LidarSafeGuard

9/13

    0 0 0 t t t

c c ct t t

, , , , 0x y r

F F F
F x y r F x y r h h h

x y r

  
    

  
 (9)

Eq. (9) is satisfied by all the (xi, yi) points. Because fi >= 0, so F = 0 means fi = 0. Then

Eq. (9) could be written in a matrix form

        F A h 0 (10)

where

  

1

2

tN

f

f

f

 
 
 

  
 
  

F (11)

  

1 1 1

c c c

2 2 2

c c c

c c c t

N N N

f f f

x y r

f f f

x y r

f f f

x y r

   
   
 
   
   
 
 
 
   
    

A (12)

  
x

y

r

h

h

h

 
 

  
 
 

h (13)

From Eq. (10) we can solve the linear equation set

      A h F (14)

Since point (xt, yt, rt) is only a guess and Eq (8) is just a first-order approximation

of Eq. (6), so Eq. (7) may not necessarily satisfy Eq. (6). But we could take the updated

Eq. (7) as a closer guess of the real (x0, y0, r0). All this means that we could refine our

guess of the real (x0, y0, r0) by using Eq. (14) and Eq. (7) iteratively. Hopefully, the

iterative process will converge to an (x0, y0, r0) which is close enough to the real (x0, y0,

r0). To detect a convergence, a residual is defined as

User manual of LidarSafeGuard

10/13

     1
norm

n n



 h h (15)

where n is the current number of iteration and norm() is the L-2 norm. A convergence

could be achieved with sufficiently small ε.

The above procedure includes solving the over-determined linear equation set,

Eq. (14). This equation is also solved by the least-squares method. In the code of

InCylRgrSafeGurad, it is achieved thanks to Eigen. In the actual code of

InCylRgrSafeGuard, the above iterative process is controlled by a maximum residual

limit and a maximum number of iterations. The user could specify these two parameters

by set_max_residual() and set_max_iters() functions. To further enhance the stability

of the iteration, a relaxation factor, λ, could be set to alter Eq. (7) into Eq. (16).

0 t

0 t

0 t

x

y

r

x x h

y y h

r r h







 

 

 

 (16)

where λ should be a positive number. If the user chooses a λ to be 0 < λ < 1, then the

under-relaxation effect could be achieved. Otherwise, if λ > 1, we will have an over-

relaxation effect. The under-relaxation is preferable than the other one. The user could

set λ by set_relax() function.

The user should set the maximum residual, maximum number of iterations, and

the relaxation factor carefully. The goal is to achieve a satisfactory solution of (x0, y0,

r0) as fast as possible, with small number of iterations and acceptable ε value. If the user

chooses not to set those three parameters, InCylRgrSafeGuard will use a set of default

values. The default values are 1e-4 maximum residual, 20 iterations and 0.5 relaxation

factor.

In the code of InCylRgrSafeGuard the standard deviation is evaluated after the

radius is analyzed.

The usage of InCylRgrSafeGuard is best illustrated by the test cases.

9 Test cases

In the current source code of LidarSafeGuard project, there is a main.cpp file which

now serves as the file contains all the test cases. The test cases are designed to cover as

many aspects of LidarSafeGuard as possible.

No. Test case Description

1 test_naive_situation() Perfect circle, mask.

InCylinderSafeGuard.

2 test_perfect_circle_with_noise() Perfect circle, noise, no mask.

User manual of LidarSafeGuard

11/13

InCylinderSafeGuard.

3 test_data_on_launchrig_no_mask() Real launch rig, no mask.

InCylinderSafeGuard.

4 test_data_on_launchrig_mask() Real launch rig, mask.

InCylinderSafeGuard.

5 test_data_on_launchrig_mask_regression() Real launch rig, mask.

InCylRgrSafeGuard.

The test cases are run on a system of Ubuntu 17.04 64bit, which is hosted on a

Windows 10 64bit PC. The hosting software is Oracle VirtualBox. The hardware

includes an Intel Core i5-2400 CPU at 3.10 GHz. The time consumed by the verify()

function in each case is measured by routines provided by the Boost library.

The input data of all the test cases are a bunch of CSV files (if an input file is

needed). These input data are shipped with the LidarSafeGuard project.

9.1 test_naive_situation()

This test case sets up an extreme case with a perfect circle as the cylinder wall. The

radius is 1 m. The RPLIDAR is located at ε = 0.9 m in the global frame, with α = 0 and

β = 0. A mask with two angle segments is set up and registered to an

InCylinderSafeGuard object. The input data is synthetic and is created on the fly. There

is no Inf in the input data. InCylinderSafeGuard should give very good analyzed results

on the radius and standard deviation. And it does.

9.2 test_perfect_circle_with_noise()

This test case use ε = 0.9 m, α = 0, and β = 0. The radius is 1 m. A random noise with

peak-to-peak fluctuation about 0.1 m is imposed on the perfect circle. No mask is

applied this time. The input data is shown in Fig. 6. An InCylinderSafeGuard is used to

do the analysis.

Fig. 6 A circle with noise as the cylinder wall.

User manual of LidarSafeGuard

12/13

9.3 test_data_on_launchrig_no_mask()

In this test, a real robot is put on a real launch rig with an actual RPLIDAR installed.

The robot sits on the rig with no movements. The RPLIDAR is installed with ε ≈ 0 m,

α ≈ 0, and β ≈ 0. The actual radius of the launch rig is about 0.521 m.

The range data is recorded by using the bag file functionality provided by the ROS.

Then the raw data is extracted from the recorded bag file. Only one frame of data is

used. There are about 360 data points in the frame of data. As shown in Fig. 7, because

of the geometry of the launch rig, there are about half the data points are Infs. However,

the other half of the data points are quite good. For the real configuration, the RPLIDAR

has its tailing cable pointing to the launch rig. So the x-axis in Fig. 7 is pointing

downwards in the real world.

Fig. 7 Actual data from the RPLIDAR on the launch rig.

An InCylinderSafeGuard object with no mask is used. Since there is no mask to

facilitate the analysis, InCylinderSafeGuard should give an unsafe flag, a wrong radius

prediction, and a large standard deviation. Meanwhile, the infRatio is as high as 0.5. It

is another sign of unsafe status.

User manual of LidarSafeGuard

13/13

9.4 test_data_on_launchrig_mask()

It is basically the same with test case test_data_on_launchrig_no_mask() with the

exception that a proper mask is applied. In the real test, the space over the robot is open

and the obstacles are all far away from the RPLIDAR, resulting lots of Inf values in

these angle regions. A mask is placed on these regions. An InCylinderSafeGuard object

is adopted. This time, the radius prediction is good with acceptable standard deviation.

The infRatio should be very low since all the data points targeting the launch rig are in

quite a good condition.

9.5 test_data_on_launchrig_mask_regression()

All the configurations are the same except that an InCylRgrSafeGuard object is used

this time. This object successfully predicts the radius with good standard deviation.

However, the time consumed by InCylRgrSafeGuard is about a magnitude higher than

that of an InCylinderSafeGuard object. But the actual time length is about 3 ms on the

test PC. So it may be acceptable on the real robot.

10 Acknowledgement

Special thanks to David Kohanbash at Carnegie Mellon University to provide me with

such a good hardware and the valuable instructions on the development.

11 References

[1] Gander, W., Golub, G. H., and Strebel, R., 1994, “Least-Squares Fitting of Circles

and Ellipses,” BIT Numer. Math., 34(4), pp. 558–578.

	1 Introduction
	2 Get the source code
	3 Compiling and linking
	4 Namespace
	5 Local frame and LidarMask
	6 Class LidarSafeGuard
	7 Class InCylinderSafeGuard
	8 Class InCylRgrSafeGuard
	9 Test cases
	9.1 test_naive_situation()
	9.2 test_perfect_circle_with_noise()
	9.3 test_data_on_launchrig_no_mask()
	9.4 test_data_on_launchrig_mask()
	9.5 test_data_on_launchrig_mask_regression()

	10 Acknowledgement
	11 References

