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Differentiate Eq. (6.216) to obtain 
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Hence verify Eq. (6.127). Use Eq. (6.221) to show that E11(κ1) is a monotonically 

decreasing function of κ1, and hence is maximum at κ1 = 0.  

 

Solution 

 

Using the rule of “differentiation under the integral”1, we have 
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Rearrange Eq. (3) 
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Insert Eq. (5) into Eq. (4) 
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Again, rearrange the terms 
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Then it is straight forward that 
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Since κ1 should be non-negative, then Eq. (3) indicates that the first order derivative 

of  11 1E   respect to κ1 is always negative. Thus  11 1E   is a monotonically 

decreasing function of κ1 with it maximum value at κ1 = 0. 

 

 

1 http://math.stackexchange.com/questions/1743872/derivative-of-an-integral-

function/1743902 

                                                 


