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From the definition of IQU. (x) (Eq. (6.152)) show that
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From conjugate symmetry show that
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From the incompressibility condition -0(x)=0, show that
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Note that all of these properties also apply to the velocity-spectrum tensor @, (K)
Solution

Setting i = j, and from the definition of Iiij (k) we could write
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where ||z| is the operation that calculates the modulus of a complex number z. So it is
quite straight forward that
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Again from the definition of R, (k,t)
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For R; (k1)

R, (k:t) = ({6, (k.8); (,0))) = (07 ()4, (s.0)) =R, (1)
Thus Eqg. (3) holds.

Let’s examine Eq. (4)
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