Solution to Ex. 6.18 of Turbulent Flows by Stephen B. Pope, 2000 Yaoyu Hu April 1st, 2017 Show that the covariance of two Fourier coefficients of velocity can be expressed as $$\langle \hat{u}_{i}(\mathbf{\kappa}',t)\hat{u}_{j}(\mathbf{\kappa},t)\rangle = \langle F_{\mathbf{\kappa}}\left\{u_{i}(\mathbf{x}',t)\right\}F_{\mathbf{\kappa}}\left\{u_{j}(\mathbf{x},t)\right\}\rangle = \langle \left\langle u_{i}(\mathbf{x}',t)e^{-i\mathbf{\kappa}'\cdot\mathbf{x}'}\right\rangle_{L}\left\langle u_{j}(\mathbf{x},t)e^{-i\mathbf{\kappa}\cdot\mathbf{x}}\right\rangle_{L}\rangle = \frac{1}{L^{6}}\int_{0}^{L}\cdots\int_{0}^{L}\left\langle u_{i}(\mathbf{x}',t)u_{j}(\mathbf{x},t)\right\rangle e^{-i(\mathbf{\kappa}'\cdot\mathbf{x}'+\mathbf{\kappa}\cdot\mathbf{x})}d\mathbf{x}d\mathbf{x}'$$ (1) With the substitution $\mathbf{x} = \mathbf{x'} + \mathbf{r}$, and from the fact that in homogenous turbulence the two-point correlation $R_{ij}(\mathbf{r},t)$ is independent of position, show that the last result can be re-expressed as $$\langle \hat{u}_{i}(\mathbf{\kappa}',t)\hat{u}_{j}(\mathbf{\kappa},t)\rangle = \langle R_{ij}(\mathbf{r},t)e^{-i\mathbf{\kappa}\cdot\mathbf{r}}\rangle_{L}\langle e^{-i\mathbf{x}\cdot(\mathbf{\kappa}'+\mathbf{\kappa})}\rangle_{L}$$ $$= F_{\kappa}\left\{R_{ij}(\mathbf{r},t)\right\}\delta_{\kappa',-\kappa'}$$ (2) (Hint: see Eq. (E.22).) Hence, by setting $\kappa' = -\kappa$, verify Eq. (6.153). ## **Solution** From Eq. (6.116), Eq. (1) could be written $$\langle \hat{u}_{i}(\mathbf{\kappa}',t)\hat{u}_{j}(\mathbf{\kappa},t)\rangle = \langle F_{\mathbf{\kappa}}\left\{u_{i}(\mathbf{x}',t)\right\}F_{\mathbf{\kappa}}\left\{u_{j}(\mathbf{x},t)\right\}\rangle$$ $$= \langle \left\langle u_{i}(\mathbf{x}',t)e^{-i\mathbf{\kappa}'\cdot\mathbf{x}'}\right\rangle_{L}\left\langle u_{j}(\mathbf{x},t)e^{-i\mathbf{\kappa}\cdot\mathbf{x}}\right\rangle_{L}\rangle$$ $$= \left\langle \frac{1}{L^{3}}\int_{0}^{L}\int_{0}^{L}\int_{0}^{L}u_{i}(\mathbf{x}',t)e^{-i\mathbf{\kappa}'\cdot\mathbf{x}'}d\mathbf{x}'\frac{1}{L^{3}}\int_{0}^{L}\int_{0}^{L}u_{j}(\mathbf{x},t)e^{-i\mathbf{\kappa}\cdot\mathbf{x}}d\mathbf{x}\rangle$$ $$= \left\langle \frac{1}{L^{6}}\int_{0}^{L}\cdots\int_{0}^{L}u_{i}(\mathbf{x}',t)u_{j}(\mathbf{x},t)e^{-i(\mathbf{\kappa}'\cdot\mathbf{x}'+\mathbf{\kappa}\cdot\mathbf{x})}d\mathbf{x}d\mathbf{x}'\right\rangle$$ $$= \frac{1}{L^{6}}\int_{0}^{L}\cdots\int_{0}^{L}\left\langle u_{i}(\mathbf{x}',t)u_{j}(\mathbf{x},t)\right\rangle e^{-i(\mathbf{\kappa}'\cdot\mathbf{x}'+\mathbf{\kappa}\cdot\mathbf{x})}d\mathbf{x}d\mathbf{x}'$$ (3) We can rewrite Eq. (3) into the form like the * term of Eq. (3) $$\left\langle \hat{u}_{i}\left(\mathbf{\kappa}',t\right)\hat{u}_{j}\left(\mathbf{\kappa},t\right)\right\rangle = \frac{1}{L^{6}}\int_{0}^{L}\cdots\int_{0}^{L}\left\langle u_{i}\left(\mathbf{x}',t\right)u_{j}\left(\mathbf{x},t\right)\right\rangle e^{-i(\mathbf{\kappa}'\cdot\mathbf{x}'+\mathbf{\kappa}\cdot\mathbf{x})}d\mathbf{x}d\mathbf{x}' = \frac{1}{L^{3}}\int_{0}^{L}\int_{0}^{L}\int_{0}^{L}\left(\frac{1}{L^{3}}\int_{-x'}^{L-x'}\int_{-x'}^{L-x'}\int_{-x'}^{L-x'}\left\langle u_{i}\left(\mathbf{x}',t\right)u_{j}\left(\mathbf{x}'+\mathbf{r},t\right)\right\rangle e^{-i(\mathbf{\kappa}'\cdot\mathbf{x}'+\mathbf{\kappa}\cdot\mathbf{x}'+\mathbf{\kappa}\cdot\mathbf{r})}d\mathbf{r}\right)d\mathbf{x}' = \frac{1}{L^{3}}\int_{0}^{L}\int_{0}^{L}\int_{0}^{L}\left(\frac{1}{L^{3}}\int_{-x'}^{L-x'}\int_{-x'}^{L-x'}\int_{-x'}^{L-x'}R_{ij}\left(\mathbf{r},t\right)e^{-i\mathbf{\kappa}\cdot\mathbf{r}}d\mathbf{r}\right)e^{-i(\mathbf{\kappa}'+\mathbf{\kappa})\cdot\mathbf{x}'}d\mathbf{x}' = \frac{1}{L^{3}}\int_{0}^{L}\int_{0}^{L}\int_{0}^{L}F_{\mathbf{\kappa}}\left\{R_{ij}\left(\mathbf{r},t\right)\right\}e^{-i(\mathbf{\kappa}'+\mathbf{\kappa})\cdot\mathbf{x}'}d\mathbf{x}' = F_{\mathbf{\kappa}}\left\{R_{ij}\left(\mathbf{r},t\right)\right\}\frac{1}{L^{3}}\int_{0}^{L}\int_{0}^{L}e^{-i\mathbf{\kappa}\cdot\mathbf{x}'}e^{i(-\mathbf{\kappa}'\cdot)\mathbf{x}'}d\mathbf{x}' = F_{\mathbf{\kappa}}\left\{R_{ij}\left(\mathbf{r},t\right)\right\}\delta_{\mathbf{\kappa},-\mathbf{\kappa}'}$$ (4) Setting $\kappa' = -\kappa$ in Eq. equation reference goes here, we can obtain $$\langle \hat{u}_{i}(-\mathbf{\kappa},t)\hat{u}_{j}(\mathbf{\kappa},t)\rangle = \langle \hat{u}_{i}^{*}(\mathbf{\kappa},t)\hat{u}_{j}(\mathbf{\kappa},t)\rangle$$ $$= \hat{R}_{ij}(\mathbf{\kappa},t)$$ $$= F_{\kappa} \left\{ R_{ij}(\mathbf{r},t) \right\} \delta_{\kappa,\kappa}$$ $$= F_{\kappa} \left\{ R_{ij}(\mathbf{r},t) \right\}$$ (5)