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Let κa, κb, and κc be three wavenumber vectors such that 

 

 a b c 0  κ κ κ   (1) 

 

and define    aˆ ,t ta u κ ,    bˆ ,t tb u κ , and    cˆ ,t tc u κ . Consider a periodic 

velocity field, which at time t = 0 has non-zero Fourier coefficient only at the six 

wavenumber aκ , bκ , and cκ . Consider the initial evolution of the velocity field 

governed by the Euler equations. Use Eq. (6.146) with ν = 0 to show that, at t = 0; 

 

(a) 

 

   a a * * * *
d

d

j

l jk k l k l

a
i P b c c b

t
  κ   (2) 

 

(b) 

 

  * a ad 1
im

d 2t

 
          

 
a a a b κ c a c κ b   (3) 

 

where im(z) function returns the imaginary part of a complex value z. 

 

(c) 

 

  * * *d
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(d) there are 24 modes with non-zero rates of change. Sketch their locations in 

wavenumber space. 

 

Solution 

 

(a) 

 

Eq. (6.146) with ν = 0 and κ = κa is expressed as 
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Using Eq. (6.121) and recall that at t = 0 only the specified six wavenumbers have 

corresponding Fourier coefficients, we could write 
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(b) 
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Introduce the projection tensor 

 

 
2

j k

jk jkP
 




    (8) 

 

Substitute Eq. (8) into Eq. (6) and we obtain 
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multiply 
*

ja  on the both sides of Eq. (9) 
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With the simple relationship 
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And note that (-iκ)* = iκ, we can have 
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Adding Eq. (10) and Eq. (12), the result is 

 

 

 

*

* * * a * * * a *

a a

a a

d d

d d

2im

j j

j j

a a
a a i i

t t

i i

         

       

        

a b κ c a c κ b

a b κ c a c κ b

a b κ c a c κ b

  (13) 

 

Thus Eq. (7) becomes 
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(c) 

 

From Eq. (14), we observe that this expression falls into a cyclic symmetric manner. 

Then we could write 
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Invoke continuity equation, Eq. (6.128), we have 

 

 a b c 0     κ a κ b κ c   (16) 

 

Then Eq. (15) turns into 
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(d) 

 

Unfortunately, I do not have a proper solution to part (d). I will check upon this exercise 

later. 

 

 


