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Show that the Fourier coefficient  ω̂ κ  of the vorticity ω u   

 

       ˆ ˆF i  κω κ ω x κ u κ   (1) 

 

Show that κ,  û κ , and  ω̂ κ  are mutually orthogonal. 

 

Solution 

 

Based on the definition of vorticity of a vector,  ω̂ κ  could be expressed as 
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  (2) 

 

For incompressible flow, the divergence of velocity field is zero, then 

 

      ˆ ˆ 0j jF i u i    κ u κ κ u κ   (3) 

 

This indicates that 

 

  ˆ 0 κ u κ   (4) 

 

Thus κ and  û κ  are orthogonal. Recall that Eq. (2) holds true, which means  ω̂ κ  

is orthogonal to both κ and  û κ . And the above indicates that the three vectors are 

mutually orthogonal. 

 


