Solution to Ex. 13.14

of Turbulent Flows by Stephen B. Pope, 2000

Yaoyu Hu April 12, 2017

Show that, for the sharp spectral filter, the constant af defined by Eq. (13.77) is

$$a_{\rm f} = \frac{3}{2} \pi^{\frac{4}{3}} \approx 6.90 \tag{1}$$

and that for the Gaussian filter it is

$$a_{\rm f} = 12^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right) \approx 7.10$$
 (2)

Solution

For sharp spectral filter

$$a_{\rm f} = 2\int_{0}^{\infty} (\kappa\Delta)^{\frac{1}{3}} G(\kappa)^{2} \Delta d\kappa$$

$$= 2\int_{0}^{\infty} (\kappa\Delta)^{\frac{1}{3}} H(\kappa_{\rm c} - |\kappa|)^{2} \Delta d\kappa$$

$$= 2\int_{0}^{\kappa_{\rm c} = \frac{\pi}{\Delta}} (\kappa\Delta)^{\frac{1}{3}} \Delta d\kappa \qquad (3)$$

$$= \frac{3}{2} (\kappa\Delta)^{\frac{4}{3}} \Big|_{0}^{\frac{\pi}{\Delta}}$$

$$= \frac{3}{2} \pi^{\frac{4}{3}}$$

For the Gaussian filter

$$a_{\rm f} = 2 \int_{0}^{\infty} (\kappa \Delta)^{\frac{1}{3}} G(\kappa)^{2} \Delta d\kappa$$

$$= 2 \int_{0}^{\infty} (\kappa \Delta)^{\frac{1}{3}} e^{-\frac{\kappa^{2} \Delta^{2}}{12}} \Delta d\kappa$$

$$\stackrel{t=\kappa\Delta}{=} 2 \int_{0}^{\infty} t^{\frac{1}{3}} e^{-\frac{t^{2}}{12}} dt$$

$$= 12^{\frac{2}{3}} \int_{0}^{\infty} \left(\frac{t^{2}}{12}\right)^{\frac{2}{3}-1} e^{-\frac{t^{2}}{12}} d\frac{t^{2}}{12}$$

$$= 12^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)$$

(4)